
Filter Design Toolbox 4
Reference Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Filter Design Toolbox Reference Guide

© COPYRIGHT 2000–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2007 Online only New for Version 4.1 (Release 2007a)
September 2007 Online only New for Version 4.2 (Release 2007b)

Contents

Functions — By Category

1
Adaptive Filter Constructors . 1-2

Least Mean Squares (LMS) Based FIR Adaptive Filters . . 1-2
Recursive Least Squares (RLS) Based FIR Adaptive

Filters . 1-3
Affine Projection (AP) FIR Adaptive Filters 1-3
FIR Adaptive Filters in the Frequency Domain (FD) 1-4
Lattice Based (L) FIR Adaptive Filters 1-4

Discrete-Time Filter Constructors 1-5

Filter Specification Objects (fdesign) — Response
Types . 1-7

Filter Specification Objects (fdesign) — Design
Methods . 1-8

Multirate Filter Constructors . 1-9

GUI-Based Filter Design Methods 1-10

Filter Analysis Methods . 1-11

Fixed-Point Filter Construction and Properties 1-14

Quantized Filter Analysis Functions 1-15

SOS Conversion Functions . 1-16

Filter Design Functions . 1-17

v

Filter Conversion Functions . 1-18

Functions — Alphabetical List

2

Index

vi Contents

1

Functions — By Category

Adaptive Filter Constructors (p. 1-2) Design adaptive filters

Discrete-Time Filter Constructors
(p. 1-5)

Design FIR and IIR discrete-time
filter objects

Filter Specification Objects (fdesign)
— Response Types (p. 1-7)

Create objects that specify filter
responses

Filter Specification Objects (fdesign)
— Design Methods (p. 1-8)

Design filter objects from
specification objects

Multirate Filter Constructors (p. 1-9) Design multirate filter objects

GUI-Based Filter Design Methods
(p. 1-10)

Use graphical user interface tools to
design filters

Filter Analysis Methods (p. 1-11) Analyze filters and filter objects

Fixed-Point Filter Construction and
Properties (p. 1-14)

Create fixed-point filters

Quantized Filter Analysis Functions
(p. 1-15)

Analyze fixed-point filters

SOS Conversion Functions (p. 1-16) Work with second-order section
filters

Filter Design Functions (p. 1-17) Design filters (not object-based)

Filter Conversion Functions (p. 1-18) Transform filters to other forms,
or use features in filter to develop
another filter

1 Functions — By Category

Adaptive Filter Constructors

Least Mean Squares (LMS) Based
FIR Adaptive Filters (p. 1-2)

Filter with LMS techniques

Recursive Least Squares (RLS)
Based FIR Adaptive Filters (p. 1-3)

Filter with RLS techniques

Affine Projection (AP) FIR Adaptive
Filters (p. 1-3)

Filter with affine projection

FIR Adaptive Filters in the
Frequency Domain (FD) (p. 1-4)

Filter in the frequency domain

Lattice Based (L) FIR Adaptive
Filters (p. 1-4)

Filter with lattice filters

Least Mean Squares (LMS) Based FIR Adaptive Filters

adaptfilt.adjlms FIR adaptive filter that uses adjoint
LMS algorithm

adaptfilt.blms FIR adaptive filter that uses BLMS

adaptfilt.blmsfft FIR adaptive filter that uses
FFT-based BLMS

adaptfilt.dlms FIR adaptive filter that uses delayed
LMS

adaptfilt.filtxlms FIR adaptive filter that uses
filtered-x LMS

adaptfilt.lms FIR adaptive filter that uses LMS

adaptfilt.nlms FIR adaptive filter that uses NLMS

adaptfilt.sd FIR adaptive filter that uses
sign-data algorithm

adaptfilt.se FIR adaptive filter that uses
sign-error algorithm

1-2

Adaptive Filter Constructors

adaptfilt.ss FIR adaptive filter that uses
sign-sign algorithm

adaptfilt.swftf FIR adaptive filter that uses sliding
window fast transversal LMS

Recursive Least Squares (RLS) Based FIR Adaptive
Filters

adaptfilt.ftf Fast transversal LMS adaptive filter

adaptfilt.hrls FIR adaptive filter that uses
householder (RLS)

adaptfilt.hswrls FIR adaptive filter that uses
householder sliding window RLS

adaptfilt.qrdrls FIR adaptive filter that uses
QR-decomposition-based RLS

adaptfilt.rls FIR adaptive filter that uses direct
form RLS

adaptfilt.swrls FIR adaptive filter that uses window
recursive least squares (RLS)

Affine Projection (AP) FIR Adaptive Filters

adaptfilt.ap FIR adaptive filter that uses direct
matrix inversion

adaptfilt.apru FIR adaptive filter that uses
recursive matrix updating

adaptfilt.bap FIR adaptive filter that uses block
affine projection

1-3

1 Functions — By Category

FIR Adaptive Filters in the Frequency Domain (FD)

adaptfilt.fdaf FIR adaptive filter that uses
frequency-domain with bin step size
normalization

adaptfilt.pbfdaf FIR adaptive filter that uses
PBFDAF with bin step size
normalization

adaptfilt.pbufdaf FIR adaptive filter that uses
PBUFDAF with bin step size
normalization

adaptfilt.tdafdct Adaptive filter that uses discrete
cosine transform

adaptfilt.tdafdft Adaptive filter that uses discrete
Fourier transform

adaptfilt.ufdaf FIR adaptive filter that uses
unconstrained frequency-domain
with quantized step size
normalization

Lattice Based (L) FIR Adaptive Filters

adaptfilt.gal FIR adaptive filter that uses
gradient lattice

adaptfilt.lsl Adaptive filter that uses LSL

adaptfilt.qrdlsl Adaptive filter that uses
QR-decomposition-based LSL

1-4

Discrete-Time Filter Constructors

Discrete-Time Filter Constructors
dfilt.allpass Allpass filter

dfilt.calattice Coupled-allpass, lattice filter

dfilt.calatticepc Coupled-allpass,
power-complementary lattice
filter

dfilt.cascade Cascade of discrete-time filters

dfilt.cascadeallpass Cascade of allpass discrete-time
filters

dfilt.cascadewdfallpass Cascade allpass WDF filters to
construct allpass WDF

dfilt.df1 Discrete-time, direct-form I filter

dfilt.df1sos Discrete-time, SOS direct-form I
filter

dfilt.df1t Discrete-time, direct-form I
transposed filter

dfilt.df1tsos Discrete-time, SOS direct-form I
transposed filter

dfilt.df2 Discrete-time, direct-form II filter

dfilt.df2sos Discrete-time, SOS, direct-form II
filter

dfilt.df2t Discrete-time, direct-form II
transposed filter

dfilt.df2tsos Discrete-time, SOS direct-form II
transposed filter

dfilt.dfasymfir Discrete-time, direct-form
antisymmetric FIR filter

dfilt.dffir Discrete-time direct-form FIR filter

dfilt.dffirt Discrete-time, direct-form FIR
transposed filter

1-5

1 Functions — By Category

dfilt.dfsymfir Discrete-time, direct-form symmetric
FIR filter

dfilt.latticeallpass Discrete-time, lattice allpass filter

dfilt.latticear Discrete-time, lattice, autoregressive
filter

dfilt.latticearma Discrete-time, lattice,
autoregressive, moving-average
filter

dfilt.latticemamax Discrete-time, lattice,
moving-average filter with maximum
phase

dfilt.latticemamin Discrete-time, lattice,
moving-average filter with minimum
phase

dfilt.parallel Discrete-time, parallel structure
filter

dfilt.scalar Discrete-time, scalar filter

dfilt.wdfallpass Wave digital allpass filter

1-6

Filter Specification Objects (fdesign) — Response Types

Filter Specification Objects (fdesign) — Response Types
fdesign.arbmag Arbitrary response magnitude filter

specification object

fdesign.arbmagnphase Arbitrary response magnitude and
phase filter specification object

fdesign.bandpass Bandpass filter specification object

fdesign.bandstop Bandstop filter specification object

fdesign.ciccomp CIC compensator filter specification
object

fdesign.decimator Decimator filter specification object

fdesign.differentiator Differentiator filter specification
object

fdesign.halfband Halfband filter specification object

fdesign.highpass Highpass filter specification object

fdesign.hilbert Hilbert filter specification object

fdesign.interpolator Interpolator filter specification

fdesign.isinclp Inverse-sinc filter specification

fdesign.lowpass Lowpass filter specification

fdesign.notch Notch filter specification

fdesign.nyquist Nyquist filter specification

fdesign.octave Octave filter specification

fdesign.peak Peak filter specification

fdesign.rsrc Rational-factor sample-rate
converter specification

1-7

1 Functions — By Category

Filter Specification Objects (fdesign) — Design Methods
cheby1 Chebyshev Type I filter using

specification object

cheby2 Chebyshev Type II filter using
specification object

designmethods Methods available for designing
filter from specification object

ellip Elliptic filter using specification
object

equiripple Equiripple single-rate or multirate
FIR filter from specification object

ifir Interpolated FIR filter from filter
specification

kaiserwin Kaiser window filter from
specification object

multistage Multistage filter from specification
object

window FIR filter using windowed impulse
response

1-8

Multirate Filter Constructors

Multirate Filter Constructors
mfilt.cascade Cascade filter objects

mfilt.cicdecim Fixed-point CIC decimator

mfilt.cicinterp Fixed-point CIC interpolator

mfilt.farrowsrc Sample rate converter with arbitrary
conversion factor

mfilt.fftfirinterp Overlap-add FIR polyphase
interpolator

mfilt.firdecim Direct-form FIR polyphase decimator

mfilt.firfracdecim Direct-form FIR polyphase fractional
decimator

mfilt.firfracinterp Direct-form FIR polyphase fractional
interpolator

mfilt.firinterp FIR filter-based interpolator

mfilt.firsrc Direct-form FIR polyphase sample
rate converter

mfilt.firtdecim Direct-form transposed FIR filter

mfilt.holdinterp FIR hold interpolator

mfilt.iirdecim IIR decimator

mfilt.iirinterp IIR interpolator

mfilt.iirwdfdecim IIR wave digital filter decimator

mfilt.iirwdfinterp IIR wave digital filter interpolator

mfilt.linearinterp Linear interpolator

1-9

1 Functions — By Category

GUI-Based Filter Design Methods
fdatool Open Filter Design and Analysis

Tool

filterbuilder GUI-based filter design

1-10

Filter Analysis Methods

Filter Analysis Methods
autoscale Automatic dynamic range scaling

block Generate block from multirate filter

coeffs Coefficients for filters

cost Cost of using discrete-time or
multirate filter

cumsec Vector of SOS filters for cumulative
sections

denormalize Undo filter coefficient and gain
changes caused by normalize

designmethods Methods available for designing
filter from specification object

designopts Valid input arguments and values
for specification object and method

disp Filter properties and values

double Cast fixed-point filter to use
double-precision arithmetic

euclidfactors Euclid factors for multirate filter

fftcoeffs Frequency-domain coefficients

filter Filter data with filter object

filtstates.cic Store CIC filter states

firtype Type of linear phase FIR filter

freqrespest Estimate fixed-point filter frequency
response through filtering

freqrespopts freqrespest parameters and values

freqsamp Real or complex frequency-sampled
FIR filter from specification object

freqz Frequency response of filter

grpdelay Filter group delay

1-11

1 Functions — By Category

help Help for design method with filter
specification

impz Filter impulse response

isfir Determine whether filter is FIR

islinphase Determine whether filter is linear
phase

ismaxphase Determine whether filter is
maximum phase

isminphase Determine whether filter is
minimum phase

isreal Determine whether filter uses real
coefficients

isstable Determine whether filter is stable

limitcycle Response of single-rate, fixed-point
IIR filter

maxstep Maximum step size for adaptive
filter convergence

measure Measure filter magnitude response

msepred Predicted mean-squared error for
adaptive filter

msesim Measured mean-squared error for
adaptive filter

noisepsd Power spectral density of filter
output

noisepsdopts Options for running filter output
noise PSD

norm P-norm of filter

normalize Normalize filter numerator or
feed-forward coefficients

normalizefreq Switch filter specification between
normalized frequency and absolute
frequency

1-12

Filter Analysis Methods

nstates Number of filter states

order Order of fixed-point filter

phasedelay Phase delay of filter

phasez Unwrapped phase response for filter

polyphase Polyphase decomposition of
multirate filter

qreport Most recent fixed-point filtering
operation report

realizemdl Simulink subsystem block for filter

reffilter Reference filter for fixed-point or
single-precision filter

reorder Rearrange sections in SOS filter

reset Reset filter properties to initial
conditions

scale Scale sections of SOS filter

scalecheck Check scaling of SOS filter

set2int Configure filter for integer filtering

setspecs Specifications for filter specification
object

specifyall Fixed-point scaling modes in
direct-form FIR filter

stepz Step response for filter

validstructures Structures for specification object
with design method

zerophase Zero-phase response for filter

zplane Zero-pole plot for filter

To see the full listing of analysis methods that apply to the adaptfilt, dfilt,
or mfilt objects, enter help adaptfilt, help dfilt, or help mfilt at the
MATLAB® prompt.

1-13

1 Functions — By Category

Fixed-Point Filter Construction and Properties
cell2sos Convert cell array to SOS matrix

get Properties of quantized filter

isreal Test if filter coefficients are real

reset Reset properties of quantized filter
to initial values

scale Scale sections of SOS filters

scalecheck Check scaling of SOS filter

scaleopts Scaling options for second-order
section scaling

set Properties of quantized filter

sos Convert quantized filter to SOS
form, order, and scale

sos2cell Convert SOS matrix to cell array

1-14

Quantized Filter Analysis Functions

Quantized Filter Analysis Functions
freqz Frequency response of filter

impz Filter impulse response

isallpass Determine whether filter is allpass

isfir Determine whether filter is FIR

islinphase Determine whether filter is linear
phase

ismaxphase Determine whether filter is
maximum phase

isminphase Determine whether filter is
minimum phase

isreal Determine whether filter uses real
coefficients

issos Determine whether filter is SOS
form

isstable Determine whether filter is stable

noisepsd Power spectral density of filter
output

noisepsdopts Options for running filter output
noise PSD

zplane Zero-pole plot for filter

1-15

1 Functions — By Category

SOS Conversion Functions
cell2sos Convert a cell array to a second-order

sections matrix

sos Convert a quantized filter to
second-order sections form, order,
and scale

sos2cell Convert a second-order sections
matrix to a cell array

1-16

Filter Design Functions

Filter Design Functions
farrow Farrow filter

fdatool Open Filter Design and Analysis
Tool

filterbuilder GUI-based filter design

fircband Constrained-band equiripple FIR
filter

firceqrip Constrained, equiripple FIR filter

fireqint Equiripple FIR interpolators

firgr Parks-McClellan FIR filter

firhalfband Halfband FIR filter

firlpnorm Least P-norm optimal FIR filter

firminphase Minimum-phase FIR spectral factor

firnyquist Lowpass Nyquist (Lth-band) FIR
filter

ifir Interpolated FIR filter from filter
specification

iircomb IIR comb notch or peak filter

iirgrpdelay Optimal IIR filter with prescribed
group-delay

iirlpnorm Least P-norm optimal IIR filter

iirlpnormc Constrained least Pth-norm optimal
IIR filter

iirnotch Second-order IIR notch filter

iirpeak Second-order IIR peak or resonator
filter

1-17

1 Functions — By Category

Filter Conversion Functions
ca2tf Convert coupled allpass filter to

transfer function from

cl2tf Convert coupled allpass lattice to
transfer function form

convert Convert filter structure of
discrete-time or multirate filter

firlp2hp Convert FIR lowpass filter to Type I
FIR highpass filter

firlp2lp Convert FIR Type I lowpass to
FIR Type 1 lowpass with inverse
bandwidth

iirlp2bp Transform IIR lowpass filter to IIR
bandpass filter

iirlp2bs Transform IIR lowpass filter to IIR
bandstop filter

iirlp2hp Transform lowpass IIR filter to
highpass filter

iirlp2lp Transform lowpass IIR filter to
different lowpass filter

iirpowcomp Power complementary IIR filter

set2int Configure filter for integer filtering

tf2ca Transfer function to coupled allpass

tf2cl Transfer function to coupled allpass
lattice

1-18

2

Functions — Alphabetical
List

adaptfilt

Purpose Adaptive filter

Syntax ha = adaptfilt.algorithm('input1',input2,...)

Description ha = adaptfilt.algorithm('input1',input2,...) returns the
adaptive filter object ha that uses the adaptive filtering technique
specified by algorithm. When you construct an adaptive filter object,
include an algorithm specifier to implement a specific adaptive filter.
Note that you do not enclose the algorithm option in single quotation
marks as you do for most strings. To construct an adaptive filter object
you must supply an algorithm string — there is no default algorithm,
although every constructor creates a default adaptive filter when you do
not provide input arguments such as input1 or input2 in the calling
syntax.

Algorithms

For adaptive filter (adaptfilt) objects, the algorithm string determines
which adaptive filter algorithm your adaptfilt object implements.
Each available algorithm entry appears in one of the tables along with a
brief description of the algorithm. Click on the algorithm in the first
column to get more information about the associated adaptive filter
technique.

• LMS based adaptive filters

• RLS based adaptive filters

• Affine projection adaptive filters

• Adaptive filters in the frequency domain

• Lattice based adaptive filters

2-2

adaptfilt

Least Mean Squares (LMS) Based FIR Adaptive Filters

adaptfilt.algorithm
String

Algorithm Used to Generate Filter
Coefficients

adaptfilt.adjlms Use the Adjoint LMS FIR adaptive filter
algorithm

adaptfilt.blms Use the Block LMS FIR adaptive filter
algorithm

adaptfilt.blmsfft Use the FFT-based Block LMS FIR
adaptive filter algorithm

adaptfilt.dlms Use the delayed LMS FIR adaptive filter
algorithm

adaptfilt.filtxlms Use the filtered-x LMS FIR adaptive
filter algorithm

adaptfilt.lms Use the LMS FIR adaptive filter
algorithm

adaptfilt.nlms Use the normalized LMS FIR adaptive
filter algorithm

adaptfilt.sd Use the sign-data LMS FIR adaptive
filter algorithm

adaptfilt.se Use the sign-error LMS FIR adaptive
filter algorithm

adaptfilt.ss Use the sign-sign LMS FIR adaptive filter
algorithm

For further information about an adapting algorithm, refer to the
reference page for the algorithm.

2-3

adaptfilt

Recursive Least Squares (RLS) Based FIR Adaptive Filters

adaptfilt.algorithm
String

Algorithm Used to Generate Filter
Coefficients

adaptfilt.ftf Use the fast transversal least squares
adaptation algorithm

adaptfilt.qrdrls Use the QR-decomposition RLS adaptation
algorithm

adaptfilt.hrls Use the householder RLS adaptation
algorithm

adaptfilt.hswrls Use the householder SWRLS adaptation
algorithm

adaptfilt.rls Use the recursive-least squares (RLS)
adaptation algorithm

adaptfilt.swrls Use the sliding window (SW) RLS adaptation
algorithm

adaptfilt.swftf Use the sliding window FTF adaptation
algorithm

For more complete information about an adapting algorithm, refer to
the reference page for the algorithm.

Affine Projection (AP) FIR Adaptive Filters

adaptfilt.algorithm
String

Algorithm Used to Generate Filter
Coefficients

adaptfilt.ap Use the affine projection algorithm that uses
direct matrix inversion

adaptfilt.apru Use the affine projection algorithm that uses
recursive matrix updating

adaptfilt.bap Use the block affine projection adaptation
algorithm

2-4

adaptfilt

To find more information about an adapting algorithm, refer to the
reference page for the algorithm.

FIR Adaptive Filters in the Frequency Domain (FD)

adaptfilt.algorithm
String

Algorithm Used to Generate Filter
Coefficients

adaptfilt.fdaf Use the frequency domain adaptation
algorithm

adaptfilt.pbfdaf Use the partition block version of the FDAF
algorithm

adaptfilt.pbufdaf Use the partition block unconstrained version
of the FDAF algorithm

adaptfilt.tdafdct Use the transform domain adaptation
algorithm using DCT

adaptfilt.tdafdft Use the transform domain adaptation
algorithm using DFT

adaptfilt.ufdaf Use the unconstrained FDAF algorithm for
adaptation

For more information about an adapting algorithm, refer to the
reference page for the algorithm.

Lattice Based (L) FIR Adaptive Filters

adaptfilt.algorithm
String

Algorithm Used to Generate Filter
Coefficients

adaptfilt.gal Use the gradient adaptive lattice filter
adaptation algorithm

adaptfilt.lsl Use the least squares lattice adaptation
algorithm

adaptfilt.qrdlsl Use the QR decomposition least squares lattice
adaptation algorithm

2-5

adaptfilt

For more information about an adapting algorithm, refer to the
reference page for the algorithm.

Properties for All Adaptive Filter Objects

Each reference page for an algorithm and adaptfilt.algorithm object
specifies which properties apply to the adapting algorithm and how
to use them.

Methods for Adaptive Filter Objects

As is true with all objects, methods enable you to perform various
operations on adaptfilt objects. To use the methods, you apply them
to the object handle that you assigned when you constructed the
adaptfilt object.

Most of the analysis methods that apply to dfilt objects also work with
adaptfilt objects. Methods like freqz rely on the filter coefficients in
the adaptfilt object. Since the coefficients change each time the filter
adapts to data, you should view the results of using a method as an
analysis of the filter at a moment in time for the object. Use caution
when you apply an analysis method to your adaptive filter objects —
always check that your result approached your expectation.

In particular, the Filter Visualization Tool (FVTool) supports all of the
adaptfilt objects. Analyzing and viewing your adaptfilt objects is
straightforward — use the fvtool method with the name of your object

fvtool(objectname)

to launch FVTool and work with your object.

Some methods share their names with functions in Signal Processing
Toolbox, or even functions in this toolbox. Functions that share names
with methods behave in a similar way. Using the same name for more
than one function or method is called overloading and is common is
many toolboxes.

2-6

adaptfilt

Method Description

adaptfilt/coefficients Return the instantaneous adaptive
filter coefficients

adaptfilt/filter Apply an adaptfilt object to your
signal

adaptfilt/freqz Plot the instantaneous adaptive filter
frequency response

adaptfilt/grpdelay Plot the instantaneous adaptive filter
group delay

adaptfilt/impz Plot the instantaneous adaptive filter
impulse response.

adaptfilt/info Return the adaptive filter information.

adaptfilt/isfir Test whether an adaptive filter is an
finite impulse response (FIR) filters.

adaptfilt/islinphase Test whether an adaptive filter is linear
phase

adaptfilt/ismaxphase Test whether an adaptive filter is
maximum phase

adaptfilt/isminphase Test whether an adaptive filter is
minimum phase

adaptfilt/isreal True whether an adaptive filter has real
coefficients

adaptfilt/isstable Test whether an adaptive filter is stable

adaptfilt/maxstep Return the maximum step size for an
adaptive filter

adaptfilt/msepred Return the predicted mean square error

adaptfilt/msesim Return the measured mean square error
via simulation.

2-7

adaptfilt

Method Description

adaptfilt/phasez Plot the instantaneous adaptive filter
phase response

adaptfilt/reset Reset an adaptive filter to initial
conditions

adaptfilt/stepz Plot the instantaneous adaptive filter
step response

adaptfilt/tf Return the instantaneous adaptive
filter transfer function

adaptfilt/zerophase Plot the instantaneous adaptive filter
zerophase response

adaptfilt/zpk Return a matrix containing the
instantaneous adaptive filter zero, pole,
and gain values

adaptfilt/zplane Plot the instantaneous adaptive filter
in the Z-plane

Working with Adaptive Filter Objects

The next sections cover viewing and changing the properties of
adaptfilt objects. Generally, modifying the properties is the same for
adaptfilt, dfilt, and mfilt objects and most of the same methods
apply to all.

Viewing Object Properties

As with any object, you can use get to view a adaptfilt object’s
properties. To see a specific property, use

get(ha,'property')

To see all properties for an object, use

get(ha)

2-8

adaptfilt

Changing Object Properties

To set specific properties, use

set(ha,'property1',value1,'property2',value2,...)

You must use single quotation marks around the property name so
MATLAB treats them as strings.

Copying an Object

To create a copy of an object, use copy.

ha2 = copy(ha)

Note Using the syntax ha2 = ha copies only the object handle and does
not create a new object — ha and ha2 are not independent. When you
change the characteristics of ha2, those of ha change as well.

Using Filter States

Two properties control your adaptive filter states.

• States — stores the current states of the filter. Before the filter is
applied, the states correspond to the initial conditions and after the
filter is applied, the states correspond to the final conditions.

• PersistentMemory — resets the filter before filtering. The default
value is false which causes the properties that are modified by the
filter, such as coefficients and states, to be reset to the value you
specified when you constructed the object, before you use the object
to filter data. Setting PersistentMemory to true allows the object
to retain its current properties between filtering operations, rather
than resetting the filter to its property values at construction.

Examples Construct an LMS adaptive filter object and use it to identify an
unknown system. For this example, use 500 iteration of the adapting
process to determine the unknown filter coefficients. Using the LMS

2-9

adaptfilt

algorithm represents one of the most straightforward technique for
adaptive filters.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 0.008; % LMS step size.
ha = adaptfilt.lms(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value');
grid on;

Glancing at the figure shows you the coefficients after adapting closely
match the desired unknown FIR filter.

2-10

adaptfilt

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

Desired
Output
Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual
Estimated

See Also dfilt, filter, mfilt

2-11

adaptfilt.adjlms

Purpose FIR adaptive filter that uses adjoint LMS algorithm

Syntax ha = adaptfilt.adjlms(l,step,leakage,pathcoeffs,pathest,...
errstates,pstates,coeffs,states)

Description ha = adaptfilt.adjlms(l,step,leakage,pathcoeffs,pathest,...
errstates,pstates,coeffs,states) constructs object ha, an FIR
adjoint LMS adaptive filter. l is the adaptive filter length (the number
of coefficients or taps) and must be a positive integer. l defaults to 10
when you omit the argument. step is the adjoint LMS step size. It
must be a nonnegative scalar. When you omit the step argument, step
defaults to 0.1.

leakage is the adjoint LMS leakage factor. It must be a scalar between
0 and 1. When leakage is less than one, you implement a leaky version
of the adjlms algorithm to determine the filter coefficients. leakage
defaults to 1 specifying no leakage in the algorithm.

pathcoeffs is the secondary path filter model. This vector should
contain the coefficient values of the secondary path from the output
actuator to the error sensor.

pathest is the estimate of the secondary path filter model. pathest
defaults to the values in pathcoeffs.

errstates is a vector of error states of the adaptive filter. It must have
a length equal to the filter order of the secondary path model estimate.
errstates defaults to a vector of zeros of appropriate length. pstates
contains the secondary path FIR filter states. It must be a vector of
length equal to the filter order of the secondary path model. pstates
defaults to a vector of zeros of appropriate length. The initial filter
coefficients for the secondary path filter compose vector coeffs. It
must be a length l vector. coeffs defaults to a length l vector of zeros.
states is a vector containing the initial filter states. It must be a vector
of length l+ne-1, where ne is the length of errstates. When you omit
states, it defaults to an appropriate length vector of zeros.

2-12

adaptfilt.adjlms

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object created. This table lists the properties for the
adjoint LMS object, their default values, and a brief description of the
property.

Property Default Value Description

Algorithm None Specifies the adaptive filter algorithm
the object uses during adaptation

Coefficients Length l vector with
zeros for all elements

Adjoint LMS FIR filter coefficients.
Should be initialized with the
initial coefficients for the FIR filter
prior to adapting. You need l
entries in coefficients. Updated
filter coefficients are returned in
coefficients when you use s as an
output argument.

ErrorStates [0,...,0] A vector of the error states for your
adaptive filter, with length equal to the
order of your secondary path filter.

FilterLength 10 The number of coefficients in your
adaptive filter.

Leakage 1 Specifies the leakage parameter.
Allows you to implement a leaky
algorithm. Including a leakage factor
can improve the results of the algorithm
by forcing the algorithm to continue to
adapt even after it reaches a minimum
value. Ranges between 0 and 1.

SecondaryPathCoeffs No default A vector that contains the coefficient
values of your secondary path from the
output actuator to the error sensor.

2-13

adaptfilt.adjlms

Property Default Value Description

SecondaryPathEstimate pathcoeffs values An estimate of the secondary path filter
model.

SecondaryPathStates Length of the
secondary path filter.
All elements are
zeros.

The states of the secondary path filter,
the unknown system

States l+ne+1, where ne is
length(errstates)

Contains the initial conditions for your
adaptive filter and returns the states
of the FIR filter after adaptation. If
omitted, it defaults to a zero vector of
length equal to l+ne+1. When you use
adaptfilt.adjlms in a loop structure,
use this element to specify the initial
filter states for the adapting FIR filter.

Stepsize 0.1 Sets the adjoint LMS algorithm step
size used for each iteration of the
adapting algorithm. Determines
both how quickly and how closely the
adaptive filter converges to the filter
solution.

PersistentMemory false or true Determine whether the filter states
get restored to their starting values for
each filtering operation. The starting
values are the values in place when you
create the filter. PersistentMemory
returns to zero any state that the filter
changes during processing. States
that the filter does not change are not
affected. Defaults to false.

Example Demonstrate active noise control of a random noise signal that runs for
1000 samples.

2-14

adaptfilt.adjlms

x = randn(1,1000); % Noise source
g = fir1(47,0.4); % FIR primary path system model
n = 0.1*randn(1,1000); % Observation noise signal
d = filter(g,1,x)+n; % Signal to be canceled (desired)
b = fir1(31,0.5); % FIR secondary path system model
mu = 0.008; % Adjoint LMS step size
ha = adaptfilt.adjlms(32,mu,1,b);
[y,e] = filter(ha,x,d);
plot(1:1000,d,'b',1:1000,e,'r');
title('Active Noise Control of a Random Noise Signal');
legend('Original','Attenuated');
xlabel('Time Index'); ylabel('Signal Value'); grid on;

Reviewing the figure shows that the adaptive filter attenuates the
original noise signal as you expect.

0 100 200 300 400 500 600 700 800 900 1000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Active Noise Control of a Random Noise Signal

Time Index

S
ig

na
l V

al
ue

Original
Attenuated

2-15

adaptfilt.adjlms

See Also adaptfilt.dlms, adaptfilt.filtxlms

References Wan, Eric., “Adjoint LMS: An Alternative to Filtered-X LMS and
Multiple Error LMS,” Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pp. 1841-1845, 1997

2-16

adaptfilt.ap

Purpose FIR adaptive filter that uses direct matrix inversion

Syntax ha = adaptfilt.ap(l,step,projectord,offset,coeffs,states,...
errstates,epsstates)

Description ha =
adaptfilt.ap(l,step,projectord,offset,coeffs,states,...
errstates,epsstates) constructs an affine projection FIR adaptive
filter ha using direct matrix inversion.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.ap.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults to
10.

step Affine projection step size. This is a scalar that
should be a value between zero and one. Setting step
equal to one provides the fastest convergence during
adaptation. step defaults to 1.

projectord Projection order of the affine projection algorithm.
projectord defines the size of the input signal
covariance matrix and defaults to two.

offset Offset for the input signal covariance matrix. You
should initialize the covariance matrix to a diagonal
matrix whose diagonal entries are equal to the offset
you specify. offset should be positive. offset
defaults to one.

2-17

adaptfilt.ap

Input
Argument Description

coeffs Vector containing the initial filter coefficients. It must
be a length l vector, the number of filter coefficients.
coeffs defaults to length l vector of zeros when you
do not provide the argument for input.

states Vector of the adaptive filter states. states defaults
to a vector of zeros which has length equal to (l +
projectord - 2).

errstates Vector of the adaptive filter error states. errstates
defaults to a zero vector with length equal to
(projectord - 1).

epsstates Vector of the epsilon values of the adaptive filter.
epsstates defaults to a vector of zeros with
(projectord - 1) elements.

Properties Since your adaptfilt.ap filter is an object, it has properties that define
its behavior in operation. Note that many of the properties are also
input arguments for creating adaptfilt.ap objects. To show you the
properties that apply, this table lists and describes each property for
the affine projection filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses during
adaptation

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or taps

2-18

adaptfilt.ap

Name Range Description

ProjectionOrder 1 to as large
as needed.

Projection order of the
affine projection algorithm.
ProjectionOrder defines the
size of the input signal covariance
matrix and defaults to two.

OffsetCov Matrix of
values

Contains the offset covariance
matrix

Coefficients Vector of
elements

Vector containing the initial filter
coefficients. It must be a length
l vector, the number of filter
coefficients. coeffs defaults to
length l vector of zeros when you
do not provide the argument for
input.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a vector
of zeros which has length equal
to (l + projectord - 2).

ErrorStates Vector of
elements

Vector of the adaptive filter error
states. errstates defaults to a
zero vector with length equal to
(projectord - 1).

EpsilonStates Vector of
elements

Vector of the epsilon values of
the adaptive filter. epsstates
defaults to a vector of zeros with
(projectord - 1) elements.

2-19

adaptfilt.ap

Name Range Description

StepSize Any scalar
from zero to
one, inclusive

Specifies the step size taken
between filter coefficient updates

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The starting
values are the values in place
when you create the filter.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected. Defaults
to true.

Example Quadrature phase shift keying (QPSK) adaptive equalization using a
32-coefficient FIR filter. Run the adaptation for 1000 iterations.

D = 16; % Number of samples of delay

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel

a = [1 -0.7]; % Denominator coefficients of channel

ntr= 1000; % Number of iterations

s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband

% QPSK signal

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal

r = filter(b,a,s)+n; % Received signal

x = r(1+D:ntr+D); % Input signal (received signal)

d = s(1:ntr); % Desired signal (delayed QPSK signal)

mu = 0.1; % Step size

po = 4; % Projection order

offset = 0.05; % Offset for covariance matrix

ha = adaptfilt.ap(32,mu,po,offset);

[y,e] = filter(ha,x,d);

2-20

adaptfilt.ap

subplot(2,2,1); plot(1:ntr,real([d;y;e]));

title('In-Phase Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,2); plot(1:ntr,imag([d;y;e]));

title('Quadrature Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Received Signal Scatter Plot'); axis('square');

xlabel('Real[x]'); ylabel('Imag[x]'); grid on;

subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Equalized Signal Scatter Plot'); axis('square');

xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

The four plots shown reveal the QPSK process at work.

0 200 400 600 800 1000
−2

−1

0

1

2
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

2-21

adaptfilt.ap

See Also msesim

References [1] Ozeki, K. and Umeda, T., “An Adaptive Filtering Algorithm Using
an Orthogonal Projection to an Affine Subspace and Its Properties,”
Electronics and Communications in Japan, vol.67-A, no. 5, pp. 19-27,
May 1984

[2] Maruyama, Y., “A Fast Method of Projection Algorithm,” Proc. 1990
IEICE Spring Conf., B-744

2-22

adaptfilt.apru

Purpose FIR adaptive filter that uses recursive matrix updating

Syntax ha = adaptfilt.apru(l,step,projectord,offset,coeffs,states,
...errstates,epsstates)

Description ha = adaptfilt.apru(l,step,projectord,offset,coeffs,states,
...errstates,epsstates) constructs an affine projection FIR adaptive
filter ha using recursive matrix updating.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.apru.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps). It must be a positive integer. l defaults to 10.

step Affine projection step size. This is a scalar that
should be a value between zero and one. Setting step
equal to one provides the fastest convergence during
adaptation. step defaults to 1.

projectord Projection order of the affine projection algorithm.
projectord defines the size of the input signal
covariance matrix and defaults to two.

offset Offset for the input signal covariance matrix. You
should initialize the covariance matrix to a diagonal
matrix whose diagonal entries are equal to the offset
you specify. offset should be positive. offset defaults
to one.

coeffs Vector containing the initial filter coefficients. It must
be a length l vector, the number of filter coefficients.
coeffs defaults to length l vector of zeros when you
do not provide the argument for input.

2-23

adaptfilt.apru

Input
Argument Description

states Vector of the adaptive filter states. states defaults
to a vector of zeros which has length equal to (l +
projectord - 2).

errstates Vector of the adaptive filter error states. errstates
defaults to a zero vector with length equal to
(projectord - 1).

epsstates Vector of the epsilon values of the adaptive filter.
epsstates defaults to a vector of zeros with
(projectord - 1) elements.

Properties Since your adaptfilt.apru filter is an object, it has properties that
define its behavior in operation. Note that many of the properties are
also input arguments for creating adaptfilt.apru objects. To show you
the properties that apply, this table lists and describes each property for
the affine projection filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

ProjectionOrder 1 to as large
as needed.

Projection order of the
affine projection algorithm.
ProjectionOrder defines
the size of the input signal
covariance matrix and defaults
to two.

2-24

adaptfilt.apru

Name Range Description

OffsetCov Matrix of
values

Contains the offset covariance
matrix

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be
a length l vector, the number
of filter coefficients. coeffs
defaults to length l vector of
zeros when you do not provide
the argument for input.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to
a vector of zeros which has
length equal to (l + projectord
- 2).

ErrorStates Vector of
elements

Vector of the adaptive filter
error states. errstates
defaults to a zero vector with
length equal to (projectord -
1).

EpsilonStates Vector of
elements

Vector of the epsilon values of
the adaptive filter. epsstates
defaults to a vector of zeros
with (projectord - 1) elements.

2-25

adaptfilt.apru

Name Range Description

StepSize Any scalar
from zero to
one, inclusive

Specifies the step size taken
between filter coefficient
updates

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter. PersistentMemory
returns to zero any state
that the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to true.

Example Demonstrate quadrature phase shift keying (QPSK) adaptive
equalization using a 32-coefficient FIR filter. This example runs the
adaptation process for 1000 iterations.

D = 16; % Number of samples of delay

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel

a = [1 -0.7]; % Denominator coefficients of channel

ntr= 1000; % Number of iterations

s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband

% QPSK sig

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal

r = filter(b,a,s)+n; % Received signal

x = r(1+D:ntr+D); % Input signal (received signal)

d = s(1:ntr); % Desired signal (delayed QPSK signal)

mu = 0.1; % Step size

po = 4; % Projection order

del = 0.05; % Offset

2-26

adaptfilt.apru

ha = adaptfilt.apru(32,mu,po,offset);

[y,e] = filter(ha,x,d);

subplot(2,2,1); plot(1:ntr,real([d;y;e]));

title('In-Phase Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,2); plot(1:ntr,imag([d;y;e]));

title('Quadrature Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Received Signal Scatter Plot'); axis('square');

xlabel('Real[x]'); ylabel('Imag[x]'); grid on;

subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Equalized Signal Scatter Plot'); axis('square');

xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

In the following component and scatter plots, you see the results of
QPSK equalization.

2-27

adaptfilt.apru

0 200 400 600 800 1000
−4

−3

−2

−1

0

1

2

3
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]
Im

ag
[y

]

See Also adaptfilt, adaptfilt.ap, adaptfilt.bap

References [1] Ozeki. K., T. Omeda, “An Adaptive Filtering Algorithm Using
an Orthogonal Projection to an Affine Subspace and Its Properties,”
Electronics and Communications in Japan, vol. 67-A, no. 5, pp. 19-27,
May 1984

[2] Maruyama, Y, “A Fast Method of Projection Algorithm,” Proceedings
1990 IEICE Spring Conference, B-744

2-28

adaptfilt.bap

Purpose FIR adaptive filter that uses block affine projection

Syntax ha = adaptfilt.bap(l,step,projectord,offset,coeffs,states)

Description ha = adaptfilt.bap(l,step,projectord,offset,coeffs,states)
constructs a block affine projection FIR adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.bap.

Input
Argument Description

l Adaptive filter length (the number of coefficients
or taps) and it must be a positive integer. l
defaults to 10.

step Affine projection step size. This is a scalar that
should be a value between zero and one. Setting
step equal to one provides the fastest convergence
during adaptation. step defaults to 1.

projectord Projection order of the affine projection algorithm.
projectord defines the size of the input signal
covariance matrix and defaults to two.

offset Offset for the input signal covariance matrix.
You should initialize the covariance matrix to a
diagonal matrix whose diagonal entries are equal
to the offset you specify. offset should be positive.
offset defaults to one.

2-29

adaptfilt.bap

Input
Argument Description

coeffs Vector containing the initial filter coefficients. It
must be a length l vector, the number of filter
coefficients. coeffs defaults to length l vector of
zeros when you do not provide the argument for
input.

states Vector of the adaptive filter states. states defaults
to a vector of zeros which has length equal to (l
+ projectord - 2).

Properties Since your adaptfilt.bap filter is an object, it has properties that
define its behavior in operation. Note that many of the properties are
also input arguments for creating adaptfilt.bap objects. To show you
the properties that apply, this table lists and describes each property for
the affine projection filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

FilterLength Any positive
integer

Reports the length of
the filter, the number of
coefficients or taps

ProjectionOrder 1 to as large as
needed.

Projection order of the
affine projection algorithm.
ProjectionOrder defines
the size of the input signal
covariance matrix and
defaults to two.

OffsetCov Matrix of values Contains the offset
covariance matrix

2-30

adaptfilt.bap

Name Range Description

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be
a length l vector, the number
of filter coefficients. coeffs
defaults to length l vector
of zeros when you do not
provide the argument for
input.

States Vector of
elements, data
type double

Vector of the adaptive filter
states. states defaults to
a vector of zeros which
has length equal to (l +
projectord - 2).

StepSize Any scalar from
zero to one,
inclusive

Specifies the step size taken
between filter coefficient
updates

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter. PersistentMemory
returns to zero any state
that the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to true.

Example Show an example of quadrature phase shift keying (QPSK) adaptive
equalization using a 32-coefficient FIR filter.

D = 16; % Number of samples of delay

2-31

adaptfilt.bap

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of

% channel

a = [1 -0.7]; % Denominator coefficients

% of channel

ntr= 1000; % Number of iterations

s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband

% QPSK signal

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal

r = filter(b,a,s)+n; % Received signal

x = r(1+D:ntr+D); % Input signal (received signal)

d = s(1:ntr); % Desired signal (delayed

% QPSK signal)

mu = 0.5; % Step size

po = 4; % Projection order

offset = 1.0; % Offset for covariance matrix

ha = adaptfilt.bap(32,mu,po,offset);

[y,e] = filter(ha,x,d);

subplot(2,2,1); plot(1:ntr,real([d;y;e]));

title('In-Phase Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,2); plot(1:ntr,imag([d;y;e]));

title('Quadrature Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Received Signal Scatter Plot'); axis('square');

xlabel('Real[x]'); ylabel('Imag[x]'); grid on;

subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Equalized Signal Scatter Plot'); axis('square');

xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

2-32

adaptfilt.bap

0 200 400 600 800 1000
−4

−2

0

2

4
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−4

−3

−2

−1

0

1

2

3
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

Using the block affine projection object in QPSK results in the plots
shown here.

See Also adaptfilt, adaptfilt.ap, adaptfilt.apru

References [1] Ozeki, K. and T. Omeda, “An Adaptive Filtering Algorithm Using
an Orthogonal Projection to an Affine Subspace and Its Properties,”
Electronics and Communications in Japan, vol. 67-A, no. 5, pp. 19-27,
May 1984

[2] Montazeri, M. and Duhamel, P, “A Set of Algorithms Linking NLMS
and Block RLS Algorithms,” IEEE Transactions Signal Processing, vol.
43, no. 2, pp, 444-453, February 1995

2-33

adaptfilt.blms

Purpose FIR adaptive filter that uses BLMS

Syntax ha = adaptfilt.blms(l,step,leakage,blocklen,coeffs,states)

Description ha = adaptfilt.blms(l,step,leakage,blocklen,coeffs,states)
constructs an FIR block LMS adaptive filter ha, where l is the adaptive
filter length (the number of coefficients or taps) and must be a positive
integer. l defaults to 10.

step is the block LMS step size. You must set step to a nonnegative
scalar. You can use function maxstep to determine a reasonable range
of step size values for the signals being processed. When unspecified,
step defaults to 0.

leakage is the block LMS leakage factor. It must be a scalar between 0
and 1. If you set leakage to be less than one, you implement the leaky
block LMS algorithm. leakage defaults to 1 specifying no leakage in
the adapting algorithm.

blocklen is the block length used. It must be a positive integer and
the signal vectors d and x should be divisible by blocklen. Larger
block lengths result in faster per-sample execution times but with
poor adaptation characteristics. When you choose blocklen such that
blocklen + length(coeffs) is a power of 2, use adaptfilt.blmsfft.
blocklen defaults to l.

coeffs is a vector of initial filter coefficients. it must be a length l
vector. coeffs defaults to length l vector of zeros.

states contains a vector of your initial filter states. It must be a length
l vector and defaults to a length l vector of zeros when you do not
include it in your calling function.

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object created. This table lists the properties for the
adjoint LMS object, their default values, and a brief description of the
property.

2-34

adaptfilt.blms

Property
Default
Value Description

Algorithm None Defines the adaptive filter algorithm
the object uses during adaptation

FilterLength Any
positive
integer

Reports the length of the filter, the
number of coefficients or taps

Coefficients Vector of
elements

Vector containing the initial filter
coefficients. It must be a length
l vector where l is the number of
filter coefficients. coeffs defaults to
length l vector of zeros when you do
not provide the argument for input.

States Vector of
elements

Vector of the adaptive filter states.
states defaults to a vector of zeros
which has length equal to l

Leakage Specifies the leakage parameter.
Allows you to implement a leaky
algorithm. Including a leakage
factor can improve the results of the
algorithm by forcing the algorithm
to continue to adapt even after it
reaches a minimum value. Ranges
between 0 and 1.

BlockLength Vector of
length l

Size of the blocks of data processed
in each iteration

2-35

adaptfilt.blms

Property
Default
Value Description

StepSize 0.1 Sets the block LMS algorithm step
size used for each iteration of the
adapting algorithm. Determines
both how quickly and how closely the
adaptive filter converges to the filter
solution. Use maxstep to determine
the maximum usable step size.

PersistentMemory false or
true

Determine whether the filter states
get restored to their starting values
for each filtering operation. The
starting values are the values in
place when you create the filter.
PersistentMemory returns to zero
any state that the filter changes
during processing. States that
the filter does not change are not
affected. Defaults to false.

Example Use an adaptive filter to identify an unknown 32nd-order FIR filter.
In this example 500 input samples result in 500 iterations of the
adaptation process. You see in the plot that follows the example code
that the adaptive filter has determined the coefficients of the unknown
system under test.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
no = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+no; % Desired signal
mu = 0.008; % Block LMS step size
n = 5; % Block length
ha = adaptfilt.blms(32,mu,1,n);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);

2-36

adaptfilt.blms

title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value');
grid on;

Based on looking at the figures here, the adaptive filter correctly
identified the unknown system after 500 iterations, or fewer. In the
lower plot, you see the comparison between the actual filter coefficients
and those determined by the adaptation process.

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3
System Identification of an FIR filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

See Also adaptfilt.blmsfft, adaptfilt.fdaf, adaptfilt.lms

2-37

adaptfilt.blms

References Shynk, J.J.,“Frequency-Domain and Multirate Adaptive Filtering,”
IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

2-38

adaptfilt.blmsfft

Purpose FIR adaptive filter that uses FFT-based BLMS

Syntax ha = adaptfilt.blmsfft(l,step,leakage,blocklen,coeffs,
states)

Description ha = adaptfilt.blmsfft(l,step,leakage,blocklen,coeffs,
states) constructs an FIR block LMS adaptive filter object ha where
l is the adaptive filter length (the number of coefficients or taps) and
must be a positive integer. l defaults to 10. step is the block LMS
step size. It must be a nonnegative scalar. The function maxstep may
be helpful to determine a reasonable range of step size values for the
signals you are processing. step defaults to 0.

leakage is the block LMS leakage factor. It must also be a
scalar between 0 and 1. When leakage is less than one, the
adaptfilt.blmsfft implements a leaky block LMS algorithm. leakage
defaults to 1 (no leakage). blocklen is the block length used. It must be
a positive integer such that

blocklen + length(coeffs)

is a power of two; otherwise, an adaptfilt.blms algorithm is used
for adapting. Larger block lengths result in faster execution times,
with poor adaptation characteristics as the cost of the speed gained.
blocklen defaults to l. Enter your initial filter coefficients in coeffs, a
vector of length l. When omitted, coeffs defaults to a length l vector of
all zeros. states contains a vector of initial filter states; it must be a
length l vector. states defaults to a length l vector of all zeros when
you omit the states argument in the calling syntax.

Properties In the syntax for creating the adaptfilt object, the input options
are properties of the object you create. This table lists the properties
for the block LMS object, their default values, and a brief description
of the property.

2-39

adaptfilt.blmsfft

Property
Default
Value Description

Algorithm None Defines the adaptive filter
algorithm the object uses during
adaptation

FilterLength Any
positive
integer

Reports the length of the filter, the
number of coefficients or taps

Coefficients Vector of
elements

Vector containing the initial filter
coefficients. It must be a length
l vector where l is the number of
filter coefficients. coefficients
defaults to length l vector of
zeros when you do not provide the
argument for input.

States Vector of
elements
of length
l

Vector of the adaptive filter states.
states defaults to a vector of zeros
which has length equal to l

Leakage 1 Specifies the leakage parameter.
Allows you to implement a leaky
algorithm. Including a leakage
factor can improve the results of the
algorithm by forcing the algorithm
to continue to adapt even after it
reaches a minimum value. Ranges
between 0 and 1.

BlockLength Vector of
length l

Size of the blocks of data processed
in each iteration

2-40

adaptfilt.blmsfft

Property
Default
Value Description

StepSize 0.1 Sets the block LMS algorithm step
size used for each iteration of the
adapting algorithm. Determines
both how quickly and how closely
the adaptive filter converges to
the filter solution. Use maxstep to
determine the maximum usable
step size.

PersistentMemory false or
true

Determine whether the filter states
get restored to their starting values
for each filtering operation. The
starting values are the values in
place when you create the filter.
PersistentMemory returns to zero
any state that the filter changes
during processing. States that
the filter does not change are not
affected. Defaults to false.

Example Identify an unknown FIR filter with 32 coefficients using 512 iterations
of the adapting algorithm.

x = randn(1,512); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
no = 0.1*randn(1,512); % Observation noise signal
d = filter(b,1,x)+no; % Desired signal
mu = 0.008; % Step size
n = 16; % Block length
ha = adaptfilt.blmsfft(32,mu,1,n);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d(1:500);y(1:500);e(1:500)]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');

2-41

adaptfilt.blmsfft

xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('actual','estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value');
grid on;

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

actual

estimated

As a result of running the adaptation process, filter object ha now
matches the unknown system FIR filter b, based on comparing the filter
coefficients derived during adaptation.

See Also adaptfilt.blms, adaptfilt.fdaf, adaptfilt.lms, filter

References Shynk, J.J., “Frequency-Domain and Multirate Adaptive Filtering,”
IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

2-42

adaptfilt.dlms

Purpose FIR adaptive filter that uses delayed LMS

Syntax ha = adaptfilt.dlms(l,step,leakage,delay,errstates,coeffs,
...states)

Description ha = adaptfilt.dlms(l,step,leakage,delay,errstates,coeffs,
...states) constructs an FIR delayed LMS adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.dlms.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults
to 10.

step LMS step size. It must be a nonnegative scalar. You
can use maxstep to determine a reasonable range
of step size values for the signals being processed.
step defaults to 0.

leakage Your LMS leakage factor. It must be a scalar
between 0 and 1. When leakage is less than one,
adaptfilt.lms implements a leaky LMS algorithm.
When you omit the leakage property in the calling
syntax, it defaults to 1 providing no leakage in the
adapting algorithm.

delay Update delay given in time samples. This scalar
should be a positive integer — negative delays do
not work. delay defaults to 1.

errstates Vector of the error states of your adaptive filter. It
must have a length equal to the update delay (delay)
in samples. errstates defaults to an appropriate
length vector of zeros.

2-43

adaptfilt.dlms

Input
Argument Description

coeffs Vector of initial filter coefficients. it must be a length
l vector. coeffs defaults to length l vector with
elements equal to zero.

states Vector of initial filter states for the adaptive filter.
It must be a length l-1 vector. states defaults to a
length l-1 vector of zeros.

Properties In the syntax for creating the adaptfilt object, the input options
are properties of the object you create. This table lists the properties
for the block LMS object, their default values, and a brief description
of the property.

Property
Default
Value Description

Algorithm None Defines the adaptive filter
algorithm the object uses during
adaptation

Coefficients Vector of
elements

Vector containing the initial filter
coefficients. It must be a length
l vector where l is the number
of filter coefficients. coeffs
defaults to length l vector of
zeros when you do not provide
the argument for input. LMS
FIR filter coefficients. Should
be initialized with the initial
coefficients for the FIR filter
prior to adapting. You need l
entries in coeffs.

Delay 1 Specifies the update delay for the
adaptive algorithm.

2-44

adaptfilt.dlms

Property
Default
Value Description

ErrorStates Vector of
zeros with
the number
of elements
equal to
delay

A vector comprising the error
states for the adaptive filter.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps.

Leakage 1 Specifies the leakage parameter.
Allows you to implement a leaky
algorithm. Including a leakage
factor can improve the results
of the algorithm by forcing the
algorithm to continue to adapt
even after it reaches a minimum
value. Ranges between 0 and 1.

PersistentMemory false or
true

Determine whether the filter
states get restored to their
starting values for each filtering
operation. The starting values
are the values in place when
you create the filter if you
have not changed the filter
since you constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected. Defaults
to false.

2-45

adaptfilt.dlms

Property
Default
Value Description

StepSize 0.1 Sets the LMS algorithm step size
used for each iteration of the
adapting algorithm. Determines
both how quickly and how closely
the adaptive filter converges to
the filter solution.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has length
equal to (l + projectord - 2).

Example System identification of a 32-coefficient FIR filter. Refer to the figure
that follows to see the results of the adapting filter process.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 0.008; % LMS step size.
delay = 1; % Update delay
ha = adaptfilt.dlms(32,mu,1,delay);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value');
grid on;

Using a delayed LMS adaptive filter in the process to identify an
unknown filter appears to work as planned, as shown in this figure.

2-46

adaptfilt.dlms

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Desired

Output

Error

Actual

Estimated

See Also adaptfilt.adjlms, adaptfilt.filtxlms, adaptfilt.lms

References Shynk, J.J.,“Frequency-Domain and Multirate Adaptive Filtering,”
IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

2-47

adaptfilt.fdaf

Purpose FIR adaptive filter that uses frequency-domain with bin step size
normalization

Syntax ha = adaptfilt.fdaf(l,step,leakage,delta,lambda,blocklen,
offset,...coeffs,states)

Description ha = adaptfilt.fdaf(l,step,leakage,delta,lambda,blocklen,
offset,...coeffs,states) constructs a frequency-domain FIR
adaptive filter ha with bin step size normalization. If you omit all the
input arguments you create a default object with l = 10 and step = 1.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.fdaf.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps). l must be a positive integer; it defaults to 10
when you omit the argument.

step Step size of the adaptive filter. This is a scalar and
should lie in the range (0,1]. step defaults to 1.

leakage Leakage parameter of the adaptive filter. If this
parameter is set to a value between zero and one,
you implement a leaky FDAF algorithm. leakage
defaults to 1 — no leakage provided in the algorithm.

delta Initial common value of all of the FFT input signal
powers. Its initial value should be positive. delta
defaults to 1.

lambda Specifies the averaging factor used to compute the
exponentially-windowed FFT input signal powers for
the coefficient updates. lambda should lie in the range
(0,1]. lambda defaults to 0.9.

2-48

adaptfilt.fdaf

Input
Argument Description

blocklen Block length for the coefficient updates. This must be
a positive integer. For faster execution, (blocklen + l)
should be a power of two. blocklen defaults to l.

offset Offset for the normalization terms in the coefficient
updates. Use this to avoid divide by zeros or by very
small numbers when any of the FFT input signal
powers become very small. offset defaults to zero.

coeffs Initial time-domain coefficients of the adaptive filter.
coeff should be a length l vector. The adaptive
filter object uses these coefficients to compute the
initial frequency-domain filter coefficients via an FFT
computed after zero-padding the time-domain vector
by the blocklen.

states The adaptive filter states. states defaults to a zero
vector that has length equal to l.

Properties Since your adaptfilt.fdaf filter is an object, it has properties that
define its behavior in operation. Note that many of the properties
are also input arguments for creating adaptfilt.fdaf objects. To
show you the properties that apply, this table lists and describes each
property for the adaptfilt.fdaf filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses during
adaptation.

2-49

adaptfilt.fdaf

Name Range Description

AvgFactor (0, 1] Specifies the averaging
factor used to compute the
exponentially-windowed FFT
input signal powers for the
coefficient updates. Same as the
input argument lambda.

BlockLength Any integer Block length for the coefficient
updates. This must be a positive
integer. For faster execution,
(blocklen + l) should be a power
of two. blocklen defaults to l.

FFTCoefficients Stores the discrete Fourier
transform of the filter coefficients
in coeffs.

FFTStates States for the FFT operation.

FilterLength Any
positive
integer

Reports the length of the filter,
the number of coefficients or taps.

Leakage Leakage parameter of the
adaptive filter. if this parameter
is set to a value between zero and
one, you implement a leaky FDAF
algorithm. leakage defaults to
1 — no leakage provided in the
algorithm.

Offset Any
positive real
value

Offset for the normalization
terms in the coefficient updates.
Use this to avoid dividing by
zero or by very small numbers
when any of the FFT input
signal powers become very small.
offset defaults to zero.

2-50

adaptfilt.fdaf

Name Range Description

PersistentMemory false or
true

Determine whether the filter
states get restored to their
starting values for each
filtering operation. The starting
values are the values in place
when you create the filter.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected. Defaults
to false.

Power A vector of 2*l elements, each
initialized with the value delta
from the input arguments. As you
filter data, Power gets updated by
the filter process.

StepSize Any scalar
from zero
to one,
inclusive

Specifies the step size taken
between filter coefficient updates

Examples Quadrature Phase Shift Keying (QPSK) adaptive equalization using
1024 iterations of a 32-coefficient FIR filter. After this example code, a
figure demonstrates the equalization results.

D = 16; % Number of samples of delay

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel

a = [1 -0.7]; % Denominator coefficients of channel

ntr= 1024; % Number of iterations

s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband

% QPSK signal

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal

r = filter(b,a,s)+n; % Received signal

2-51

adaptfilt.fdaf

x = r(1+D:ntr+D); % Input signal (received signal)

d = s(1:ntr); % Desired signal (delayed QPSK

% signal)

del = 1; % Initial FFT input powers

mu = 0.1; % Step size

lam = 0.9; % Averaging factor

ha = adaptfilt.fdaf(32,mu,1,del,lam);

[y,e] = filter(ha,x,d);

subplot(2,2,1); plot(1:ntr,real([d;y;e]));

title('In-Phase Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('signal value');

subplot(2,2,2); plot(1:ntr,imag([d;y;e]));

title('Quadrature Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('signal value');

subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Received Signal Scatter Plot'); axis('square');

xlabel('Real[x]'); ylabel('Imag[x]'); grid on;

subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Equalized Signal Scatter Plot'); axis('square');

xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

2-52

adaptfilt.fdaf

0 500 1000 1500
−2

−1

0

1

2

3
In−Phase Components

Time Index

si
gn

al
 v

al
ue

Desired

Output

Error

0 500 1000 1500
−2

−1.5

−1

−0.5

0

0.5

1

1.5
Quadrature Components

Time Index

si
gn

al
 v

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]
Im

ag
[y

]

See Also adaptfilt.ufdaf, adaptfilt.pbfdaf, adaptfilt.blms,
adaptfilt.blmsfft

References Shynk, J.J.,“Frequency-Domain and Multirate Adaptive Filtering,”
IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992

2-53

adaptfilt.filtxlms

Purpose FIR adaptive filter that uses filtered-x LMS

Syntax ha = adaptfilt.filtxlms(l,step,leakage,pathcoeffs,
pathest,...errstates,pstates,coeffs,states)

Description ha = adaptfilt.filtxlms(l,step,leakage,pathcoeffs,
pathest,...errstates,pstates,coeffs,states) constructs an
filtered-x LMS adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.filtxlms.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults
to 10.

step Filtered LMS step size. it must be a nonnegative
scalar. step defaults to 0.1.

leakage is the filtered-x LMS leakage factor. it must be a
scalar between 0 and 1. If it is less than one, a leaky
version of adaptfilt.filtxlms is implemented.
leakage defaults to 1 (no leakage).

pathcoeffs is the secondary path filter model. this vector should
contain the coefficient values of the secondary path
from the output actuator to the error sensor.

pathest is the estimate of the secondary path filter model.
pathest defaults to the values in pathcoeffs.

fstates is a vector of filtered input states of the adaptive
filter. fstates defaults to a zero vector of length
equal to (l - 1).

2-54

adaptfilt.filtxlms

Input
Argument Description

pstates are the secondary path FIR filter states. it must be
a vector of length equal to the (length(pathcoeffs)
- 1). pstates defaults to a vector of zeros of
appropriate length.

coeffs is a vector of initial filter coefficients. it must be a
length l vector. coeffs defaults to length l vector
of zeros.

states Vector of initial filter states. states defaults
to a zero vector of length equal to the larger of
(length(pathcoeffs) - 1) and (length(pathest) - 1).

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object created. This table lists the properties for the
adjoint LMS object, their default values, and a brief description of the
property.

Property
Default
Value Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

Coefficients Vector of
elements

Vector containing the
initial filter coefficients. It
must be a length l vector
where l is the number of
filter coefficients. coeffs
defaults to length l vector
of zeros when you do not
provide the argument for
input.

2-55

adaptfilt.filtxlms

Property
Default
Value Description

FilteredInputStates l-1 Vector of filtered input
states with length equal to
l - 1.

FilterLength Any positive
integer

Reports the length of
the filter, the number of
coefficients or taps

States Vector of
elements

Vector of the adaptive
filter states. states
defaults to a vector of zeros
which has length equal
to (l + projectord - 2)

SecondaryPathCoeffs No default A vector that contains the
coefficient values of your
secondary path from the
output actuator to the
error sensor

SecondaryPathEstimate pathcoeffs
values

An estimate of the
secondary path filter
model

2-56

adaptfilt.filtxlms

Property
Default
Value Description

SecondaryPathStates Vector of
size (length
(pathcoeffs)
-1) with all
elements
equal to zero.

The states of the secondary
path FIR filter — the
unknown system

StepSize 0.1 Sets the filtered-x
algorithm step size
used for each iteration
of the adapting algorithm.
Determines both how
quickly and how closely the
adaptive filter converges
to the filter solution.

Example Demonstrate active noise control of a random noise signal over 1000
iterations.

As the figure that follows this code demonstrates, the filtered-x LMS
filter successfully controls random noise in this context.

x = randn(1,1000); % Noise source
g = fir1(47,0.4); % FIR primary path system model
n = 0.1*randn(1,1000); % Observation noise signal
d = filter(g,1,x)+n; % Signal to be cancelled (desired)
b = fir1(31,0.5); % FIR secondary path system model
mu = 0.008; % Filtered-X LMS step size
ha = adaptfilt.filtxlms(32,mu,1,b);
[y,e] = filter(ha,x,d);
plot(1:1000,d,'b',1:1000,e,'r');
title('Active Noise Control of a Random Noise Signal');
legend('Original','Attenuated');
xlabel('Time Index'); ylabel('Signal Value'); grid on;

2-57

adaptfilt.filtxlms

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3
Active Noise Control of a Random Noise Signal

Time Index

S
ig

na
l V

al
ue

Original
Attenuated

See also adaptfilt.dlms, adaptfilt.lms

References Shynk J.J., “Frequency-Domain and Multirate Adaptive Filtering,”
IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

2-58

adaptfilt.ftf

Purpose Fast transversal LMS adaptive filter

Syntax ha = adaptfilt.ftf(l,lambda,delta,gamma,gstates,coeffs,
states)

Description ha = adaptfilt.ftf(l,lambda,delta,gamma,gstates,coeffs,
states) constructs a fast transversal least squares adaptive filter
object ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.ftf.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults
to 10.

lambda RLS forgetting factor. This is a scalar that should
lie in the range (1-0.5/l, 1]. lambda defaults to 1.

delta Soft-constrained initialization factor. This scalar
should be positive and sufficiently large to prevent
an excessive number of Kalman gain rescues. delta
defaults to one.

gamma Conversion factor. gamma defaults to one specifying
soft-constrained initialization.

gstates States of the Kalman gain updates. gstates
defaults to a zero vector of length l.

coeffs Length l vector of initial filter coefficients. coeffs
defaults to a length l vector of zeros.

states Vector of initial filter States. states defaults to a
zero vector of length (l-1).

2-59

adaptfilt.ftf

Properties Since your adaptfilt.ftf filter is an object, it has properties that
define its operating behavior. Note that many of the properties are also
input arguments for creating adaptfilt.ftf objects. To show you the
properties that apply, this table lists and describes each property for the
fast transversal least squares filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses during
adaptation

BkwdPrediction Returns the predicted samples
generated during adaptation.
Refer to [2] in the bibliography
for details about linear
prediction.

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do not
provide the argument for input.

ConversionFactor Conversion factor. Called gamma
when it is an input argument,
it defaults to the matrix [1 -1]
that specifies soft-constrained
initialization.

FilterLength Any
positive
integer

Reports the length of the filter,
the number of coefficients or taps

2-60

adaptfilt.ftf

Name Range Description

ForgettingFactor RLS forgetting factor. This
is a scalar that should lie in
the range (1-0.5/l, 1]. lambda
defaults to 1.

FwdPrediction Contains the predicted values
for samples during adaptation.
Compare these to the actual
samples to get the error and
power.

InitFactor Soft-constrained initialization
factor. This scalar should be
positive and sufficiently large
to prevent an excessive number
of Kalman gain rescues. delta
defaults to one.

KalmanGain Empty when you construct the
object, this gets populated after
you run the filter.

2-61

adaptfilt.ftf

Name Range Description

PersistentMemory false or
true

Determine whether the filter
states get restored to their
starting values for each filtering
operation. The starting values
are the values in place when
you create the filter if you
have not changed the filter
since you constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected. Defaults
to false.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has length
equal to (l + projectord - 2).

Examples System Identification of a 32-coefficient FIR filter by running the
identification process for 500 iterations.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
N = 31; % Adaptive filter order
lam = 0.99; % RLS forgetting factor
del = 0.1; % Soft-constrained

% initialization factor
ha = adaptfilt.ftf(32,lam,del);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);

2-62

adaptfilt.ftf

title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('coefficient #'); ylabel('Coefficient Value');
grid on;

For this example of identifying an unknown system, the figure shows
that the adaptation process identifies the filter coefficients for the
unknown FIR filter within the first 150 iterations.

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2
System Identification of an FIR filter

Time Index

si
gn

al
 v

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

See Also adaptfilt.swftf, adaptfilt.rls, adaptfilt.lsl

2-63

adaptfilt.ftf

References D.T.M. Slock and Kailath, T., “Numerically Stable Fast Transversal
Filters for Recursive Least Squares Adaptive Filtering,” IEEE Trans.
Signal Processing, vol. 38, no. 1, pp. 92-114.

2-64

adaptfilt.gal

Purpose FIR adaptive filter that uses gradient lattice

Syntax ha = adaptfilt.gal(l,step,leakage,offset,rstep,delta,
lambda,...rcoeffs,coeffs,states)

Description ha = adaptfilt.gal(l,step,leakage,offset,rstep,delta,
lambda,...rcoeffs,coeffs,states) constructs a gradient adaptive
lattice FIR filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.gal.

Input
Argument Description

l Length of the joint process filter coefficients. It must
be a positive integer and must be equal to the length
of the reflection coefficients plus one. l defaults to 10.

step Joint process step size of the adaptive filter. This
scalar should be a value between zero and one. step
defaults to 0.

leakage Leakage factor of the adaptive filter. It must be a
scalar between 0 and 1. Setting leakage less than one
implements a leaky algorithm to estimate both the
reflection and the joint process coefficients. leakage
defaults to 1 (no leakage).

offset Specifies an optional offset for the denominator of
the step size normalization term. It must be a scalar
greater or equal to zero. A non-zero offset is useful
to avoid divide-by-near-zero conditions when the input
signal amplitude becomes very small. offset defaults
to 1.

2-65

adaptfilt.gal

Input
Argument Description

rstep Reflection process step size of the adaptive filter. This
scalar should be a value between zero and one. rstep
defaults to step.

delta Initial common value of the forward and backward
prediction error powers. It should be a positive value.
0.1 is the default value for delta.

lambda Specifies the averaging factor used to compute the
exponentially windowed forward and backward
prediction error powers for the coefficient updates.
lambda should lie in the range (0, 1]. lambda defaults
to the value (1 - step).

rcoeffs Vector of initial reflection coefficients. It should be a
length (l-1) vector. rcoeffs defaults to a zero vector
of length (l-1).

coeffs Vector of initial joint process filter coefficients. It
must be a length l vector. coeffs defaults to a length
l vector of zeros.

states Vector of the backward prediction error states of the
adaptive filter. states defaults to a zero vector of
length (l-1).

Properties Since your adaptfilt.gal filter is an object, it has properties that
define its behavior in operation. Note that many of the properties are
also input arguments for creating adaptfilt.gal objects. To show you
the properties that apply, this table lists and describes each property for
the affine projection filter object.

2-66

adaptfilt.gal

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses during
adaptation

AvgFactor Specifies the averaging
factor used to compute the
exponentially-windowed forward
and backward prediction error
powers for the coefficient
updates. Same as the input
argument lambda.

BkwdPredErrorPower Returns the minimum
mean-squared prediction error.
Refer to [2] in the bibliography
for details about linear prediction

Coefficients Vector of
elements

Vector containing the initial filter
coefficients. It must be a length
l vector where l is the number
of filter coefficients. coeffs
defaults to length l vector of
zeros when you do not provide
the argument for input.

FilterLength Any
positive
integer

Reports the length of the filter,
the number of coefficients or taps

FwdPredErrorPower Returns the minimum
mean-squared prediction error in
the forward direction. Refer to
[2] in the bibliography for details
about linear prediction.

2-67

adaptfilt.gal

Name Range Description

Leakage 0 to 1 Leakage parameter of the
adaptive filter. If this parameter
is set to a value between zero and
one, you implement a leaky GAL
algorithm. leakage defaults to
1 — no leakage provided in the
algorithm.

Offset Offset for the normalization
terms in the coefficient updates.
Use this to avoid dividing by zero
or by very small numbers when
input signal amplitude becomes
very small. offset defaults to
one.

PersistentMemory false or
true

Determine whether the filter
states get restored to their
starting values for each filtering
operation. The starting values
are the values in place when
you create the filter if you
have not changed the filter
since you constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected. Defaults
to false.

ReflectionCoeffs Coefficients determined for the
reflection portion of the filter
during adaptation.

2-68

adaptfilt.gal

Name Range Description

ReflectionCoeffsStep Size of the steps used to
determine the reflection
coefficients.

States Vector of
elements

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has length
equal to (l + projectord - 2).

StepSize 0 to 1 Specifies the step size taken
between filter coefficient updates

Examples Perform a Quadrature Phase Shift Keying (QPSK) adaptive equalization
using a 32-coefficient adaptive filter over 1000 iterations.

D = 16; % Number of delay samples

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients

a = [1 -0.7]; % Denominator coefficients

ntr= 1000; % Number of iterations

s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband

% QPSK signal

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal

r = filter(b,a,s)+n; % Received signal

x = r(1+D:ntr+D); % Input signal (received signal)

d = s(1:ntr); % Desired signal (delayed QPSK signal)

L = 32; % filter length

mu = 0.007; % Step size

ha = adaptfilt.gal(L,mu);

[y,e] = filter(ha,x,d);

subplot(2,2,1); plot(1:ntr,real([d;y;e]));

title('In-Phase Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('signal value');

subplot(2,2,2); plot(1:ntr,imag([d;y;e]));

title('Quadrature Components');

legend('Desired','Output','Error');

2-69

adaptfilt.gal

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,3); plot(x(ntr-100:ntr),'.');

axis([-3 3 -3 3]);

title('Received Signal Scatter Plot');

axis('square');

xlabel('Real[x]'); ylabel('Imag[x]');

grid on;

subplot(2,2,4); plot(y(ntr-100:ntr),'.');

axis([-3 3 -3 3]);

title('Equalized Signal Scatter Plot');

axis('square');

xlabel('Real[y]'); ylabel('Imag[y]');

grid on;

To see the results, look at this figure.

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5
In−Phase Components

Time Index

si
gn

al
 v

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

2-70

adaptfilt.gal

See Also adaptfilt.qrdlsl, adaptfilt.lsl, adaptfilt.tdafdft

References Griffiths, L.J. “A Continuously Adaptive Filter Implemented as a Lattice
Structure,” Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, Hartford, CT, pp. 683-686, 1977

Haykin, S.,Adaptive Filter Theory, 3rd Ed., Upper Saddle River, NJ,
Prentice Hall, 1996

2-71

adaptfilt.hrls

Purpose FIR adaptive filter that uses householder (RLS)

Syntax ha = adaptfilt.hrls(l,lambda,sqrtinvcov,coeffs,states)

Description ha = adaptfilt.hrls(l,lambda,sqrtinvcov,coeffs,states)
constructs an FIR householder RLS adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.hrls.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults
to 10.

lambda RLS forgetting factor. This is a scalar and should
lie in the range (0, 1]. lambda defaults to 1 meaning
the adaptation process retains infinite memory.

sqrtinvcov Square-root of the inverse of the sliding window
input signal covariance matrix. This square matrix
should be full-ranked.

coeffs Vector of initial filter coefficients. It must be a
length l vector. coeffs defaults to being a length l
vector of zeros.

states Vector of initial filter states. It must be a length
l-1 vector. states defaults to a length l-1 vector
of zeros.

Properties Since your adaptfilt.hrls filter is an object, it has properties that
define its behavior in operation. Note that many of the properties are
also input arguments for creating adaptfilt.hrls objects. To show you
the properties that apply, this table lists and describes each property for
the affine projection filter object.

2-72

adaptfilt.hrls

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses during
adaptation

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do not
provide the argument for input.

FilterLength Any
positive
integer

Reports the length of the filter,
the number of coefficients or taps

ForgettingFactor Scalar RLS forgetting factor. This is a
scalar and should lie in the range
(0, 1]. Same as input argument
lambda. It defaults to 1 meaning
the adaptation process retains
infinite memory.

KalmanGain Vector of
size (l,1)

Empty when you construct the
object, this gets populated after
you run the filter.

2-73

adaptfilt.hrls

Name Range Description

PersistentMemory false or
true

Determine whether the filter
states get restored to their
starting values for each filtering
operation. The starting values
are the values in place when
you create the filter if you
have not changed the filter
since you constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
Defaults to false.

SqrtInvCov Matrix of
doubles

Square root of the inverse of
the sliding window input signal
covariance matrix. This square
matrix should be full-ranked.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has length
equal to (l - 1).

Examples Use 500 iterations of an adaptive filter object to identify a 32-coefficient
FIR filter system. Both the example code and the resulting figure show
the successful filter identification through adaptive filter processing.

x = randn(1,500); % Input to the filter

b = fir1(31,0.5); % FIR system to be identified

n = 0.1*randn(1,500); % Observation noise signal

d = filter(b,1,x)+n; % Desired signal

G0 = sqrt(10)*eye(32); % Initial sqrt correlation matrix inverse

lam = 0.99; % RLS forgetting factor

ha = adaptfilt.hrls(32,lam,G0);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:500,[d;y;e]);

2-74

adaptfilt.hrls

title('System Identification of an FIR Filter');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,1,2); stem([b.',ha.Coefficients.']);

legend('Actual','Estimated');

xlabel('Coefficient #'); ylabel('Coefficient Value');

grid on;

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3
System Identification of an FIR filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hswrls

2-75

adaptfilt.hswrls

Purpose FIR adaptive filter that uses householder sliding window RLS

Syntax ha = adaptfilt.hswrls(l,lambda,sqrtinvcov,swblocklen,
dstates,coeffs,states)

Description ha = adaptfilt.hswrls(l,lambda,sqrtinvcov,swblocklen,
dstates,coeffs,states) constructs an FIR householder sliding
window recursive-least-square adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.hswrls.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults
to 10.

lambda Recursive least square (RLS) forgetting factor. This
is a scalar and should lie in the range (0, 1]. lambda
defaults to 1 meaning the adaptation process retains
infinite memory.

sqrtinvcov Square-root of the inverse of the sliding window
input signal covariance matrix. This square matrix
should be full-ranked.

swblocklen Block length of the sliding window. This integer
must be at least as large as the filter length.
swblocklen defaults to 16.

dstates Desired signal states of the adaptive filter. dstates
defaults to a zero vector with length equal to
(swblocklen - 1).

2-76

adaptfilt.hswrls

Input
Argument Description

coeffs Vector of initial filter coefficients. It must be a
length l vector. coeffs defaults to being a length l
vector of zeros.

states Vector of initial filter states. It must be a length
(l + swblocklen - 2) vector. states defaults to
a length (l + swblocklen -2) vector of zeros.

Properties Since your adaptfilt.hswrls filter is an object, it has properties that
define its behavior in operation. Note that many of the properties
are also input arguments for creating adaptfilt.hswrls objects. To
show you the properties that apply, this table lists and describes each
property for the affine projection filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do
not provide the argument for
input.

DesiredSignalStates Vector Desired signal states of the
adaptive filter. dstates
defaults to a zero vector with
length equal to (swblocklen -
1).

2-77

adaptfilt.hswrls

Name Range Description

FilterLength Any
positive
integer

Reports the length of the filter,
the number of coefficients or
taps

ForgettingFactor Scalar Root-least-square (RLS)
forgetting factor. This is
a scalar and should lie in
the range (0, 1]. Same as
input argument lambda. It
defaults to 1 meaning the
adaptation process retains
infinite memory.

KalmanGain (l,1) vector Empty when you construct
the object, this gets populated
after you run the filter.

PersistentMemory false or
true

Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter if you have not changed
the filter since you constructed
it. PersistentMemory returns
to zero any state that the filter
changes during processing.
Defaults to false.

SqrtInvCov l-by-l
Matrix

Square-root of the inverse
of the sliding window input
signal covariance matrix.
This square matrix should be
full-ranked.

2-78

adaptfilt.hswrls

Name Range Description

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults
to a vector of zeros which
has length equal to (l +
projectord - 2).

SwBlockLength Integer Block length of the sliding
window. This integer must be
at least as large as the filter
length. swblocklen defaults
to 16.

Examples System Identification of a 32-coefficient FIR filter.

x = randn(1,500); % Input to the filter

b = fir1(31,0.5); % FIR system to be identified

n = 0.1*randn(1,500); % Observation noise signal

d = filter(b,1,x)+n; % Desired signal

G0 = sqrt(10)*eye(32); % Initial sqrt correlation

% matrix inverse

lam = 0.99; % RLS forgetting factor

N = 64; % block length

ha = adaptfilt.hswrls(32,lam,G0,N);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:500,[d;y;e]);

title('System Identification of an FIR Filter');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,1,2); stem([b.',ha.Coefficients.']);

legend('Actual','Estimated');

xlabel('Coefficient #'); ylabel('Coefficient Value');

grid on;

In the pair of plots shown in the figure you see the comparison of the
desired and actual output for the adapting filter and the coefficients of
both filters, the unknown and the adapted.

2-79

adaptfilt.hswrls

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3
System Identification of an FIR filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hrls

2-80

adaptfilt.lms

Purpose FIR adaptive filter that uses LMS

Syntax ha = adaptfilt.lms(l,step,leakage,coeffs,states)

Description ha = adaptfilt.lms(l,step,leakage,coeffs,states) constructs an
FIR LMS adaptive filter object ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.lms.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults
to 10.

step LMS step size. It must be a nonnegative scalar. You
can use maxstep to determine a reasonable range of
step size values for the signals being processed. step
defaults to 0.1.

leakage Your LMS leakage factor. It must be a scalar
between 0 and 1. When leakage is less than one,
adaptfilt.lms implements a leaky LMS algorithm.
When you omit the leakage property in the calling
syntax, it defaults to 1 providing no leakage in the
adapting algorithm.

coeffs Vector of initial filter coefficients. it must be a length
l vector. coeffs defaults to length l vector with
elements equal to zero.

states Vector of initial filter states for the adaptive filter.
It must be a length l-1 vector. states defaults to a
length l-1 vector of zeros.

2-81

adaptfilt.lms

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object created. This table lists the properties for the
adaptfilt.lms object, their default values, and a brief description of
the property.

Property Range Property Description

Algorithm None Reports the adaptive filter
algorithm the object uses during
adaptation

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to a length l
vector of zeros when you do not
provide the vector as an input
argument.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

Leakage 0 to 1 LMS leakage factor. It must
be a scalar between zero and
one. When it is less than
one, a leaky NLMS algorithm
results. leakage defaults to 1
(no leakage).

2-82

adaptfilt.lms

Property Range Property Description

PersistentMemory false or true Determine whether the filter
states and coefficients get
restored to their starting values
for each filtering operation. The
starting values are the values in
place when you create the filter.
PersistentMemory returns to
zero any property value that the
filter changes during processing.
Property values that the filter
does not change are not affected.
Defaults to false.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has length
equal to (l - 1).

StepSize 0 to 1 LMS step size. It must be a
scalar between zero and one.
Setting this step size value
to one provides the fastest
convergence. step defaults to
0.1.

Example Use 500 iterations of an adapting filter system to identify and unknown
32nd-order FIR filter.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 0.008; % LMS step size.
ha = adaptfilt.lms(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);

2-83

adaptfilt.lms

title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value');
grid on;

Using LMS filters in an adaptive filter architecture is a time honored
means for identifying an unknown filter. By running the example code
provided you can demonstrate one process to identify an unknown FIR
filter.

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Desired

Output

Error

Actual

Estimated

2-84

adaptfilt.lms

See Also adaptfilt.blms, adaptfilt.blmsfft, adaptfilt.dlms,
adaptfilt.nlms, adaptfilt.tdafdft, adaptfilt.sd, adaptfilt.se,
adaptfilt.ss

References Shynk J.J.,, “Frequency-Domain and Multirate Adaptive Filtering,”
IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

2-85

adaptfilt.lsl

Purpose Adaptive filter that uses LSL

Syntax ha = adaptfilt.lsl(l,lambda,delta,coeffs,states)

Description ha = adaptfilt.lsl(l,lambda,delta,coeffs,states) constructs a
least squares lattice adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.lsl.

Input
Argument Description

l Length of the joint process filter coefficients. It
must be a positive integer and must be equal to
the length of the prediction coefficients plus one. L
defaults to 10.

lambda Forgetting factor of the adaptive filter. This is a
scalar and should lie in the range (0, 1]. lambda
defaults to 1. lambda = 1 denotes infinite memory
while adapting to find the new filter.

delta Soft-constrained initialization factor in the least
squares lattice algorithm. It should be positive.
delta defaults to 1.

coeffs Vector of initial joint process filter coefficients. It
must be a length l vector. coeffs defaults to a
length l vector of all zeros.

states Vector of the backward prediction error states of the
adaptive filter. states defaults to a length l vector
of all zeros, specifying soft-constrained initialization
for the algorithm.

Properties Since your adaptfilt.lsl filter is an object, it has properties that
define its behavior in operation. Note that many of the properties are

2-86

adaptfilt.lsl

also input arguments for creating adaptfilt.lsl objects. To show you
the properties that apply, this table lists and describes each property
for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation.

BkwdPrediction Returns the predicted
samples generated during
adaptation. Refer to [2] in the
bibliography for details about
linear prediction.

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do
not provide the argument for
input.

FilterLength Any positive
integer

Reports the length of
the filter, the number of
coefficients or taps.

ForgettingFactor Forgetting factor of the
adaptive filter. This is
a scalar and should lie
in the range (0, 1]. It
defaults to 1. Setting
forgetting factor = 1
denotes infinite memory
while adapting to find the
new filter. Note that this is
the lambda input argument.

2-87

adaptfilt.lsl

Name Range Description

FwdPrediction Contains the predicted
values for samples during
adaptation. Compare these
to the actual samples to get
the error and power.

InitFactor Soft-constrained
initialization factor. This
scalar should be positive and
sufficiently large to prevent
an excessive number of
Kalman gain rescues. delta
defaults to one.

PersistentMemory false or true Determine whether the
filter states get restored
to their starting values for
each filtering operation.
The starting values are
the values in place when
you create the filter if
you have not changed the
filter since you constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does
not change are not affected.
Defaults to false.

States Vector of
elements, data
type double

Vector of the adaptive filter
states. states defaults to
a vector of zeros which has
length equal to l.

2-88

adaptfilt.lsl

Examples Demonstrate Quadrature Phase Shift Keying (QPSK) adaptive
equalization using a 32-coefficient adaptive filter running for 1000
iterations. After you review the example code, the figure shows the
results of running the example to use QPSK adaptive equalization with
a 32nd-order FIR filter. Notice that the error between the in-phase
and quadrature components, as shown by the errors plotted in the
upper plots, falls to near zero. Also, the equalized signal shows the
clear quadrature nature.

D = 16; % Number of samples of delay

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel

a = [1 -0.7]; % Denominator coefficients of channel

ntr= 1000; % Number of iterations

s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband

% QPSK signal

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal

r = filter(b,a,s)+n; % Received signal

x = r(1+D:ntr+D); % Input signal (received signal)

d = s(1:ntr); % Desired signal (delayed QPSK

% signal)

lam = 0.995; % Forgetting factor

del = 1; % Soft-constrained initialization

factor

ha = adaptfilt.lsl(32,lam,del);

[y,e] = filter(ha,x,d);

subplot(2,2,1); plot(1:ntr,real([d;y;e]));

title('In-Phase Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,2); plot(1:ntr,imag([d;y;e]));

title('Quadrature Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,3); plot(x(ntr-100:ntr),'.');

axis([-3 3 -3 3]);

title('Received Signal Scatter Plot');

axis('square');

2-89

adaptfilt.lsl

xlabel('Real[x]'); ylabel('Imag[x]');

grid on;

subplot(2,2,4); plot(y(ntr-100:ntr),'.');

axis([-3 3 -3 3]);

title('Equalized Signal Scatter Plot');

axis('square');

xlabel('Real[y]'); ylabel('Imag[y]');

grid on;

0 200 400 600 800 1000
−6

−4

−2

0

2

4
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−4

−2

0

2

4
Quadrature Components

Time Index
S

ig
na

l V
al

ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

See Also adaptfilt.qrdlsl, adaptfilt.gal, adaptfilt.ftf, adaptfilt.rls

2-90

adaptfilt.lsl

References Haykin, S., Adaptive Filter Theory, 2nd Edition, Prentice Hall, N.J.,
1991

2-91

adaptfilt.nlms

Purpose FIR adaptive filter that uses NLMS

Syntax ha = adaptfilt.nlms(l,step,leakage,offset,coeffs,states)

Description ha = adaptfilt.nlms(l,step,leakage,offset,coeffs,states)
constructs a normalized least-mean squares (NLMS) FIR adaptive filter
object named ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.nlms.

Input
Argument Description

l Adaptive filter length (the number of coefficients
or taps) and it must be a positive integer. l
defaults to 10.

step NLMS step size. It must be a scalar between 0
and 2. Setting this step size value to one provides
the fastest convergence. step defaults to 1.

leakage NLMS leakage factor. It must be a scalar between
zero and one. When it is less than one, a leaky
NLMS algorithm results. leakage defaults to 1
(no leakage).

offset Specifies an optional offset for the denominator
of the step size normalization term. You must
specify offset to be a scalar greater than or
equal to zero. Nonzero offsets can help avoid a
divide-by-near-zero condition that causes errors.
Use this to avoid dividing by zero (or by very
small numbers) when the square of the input data
norm becomes very small (when the input signal
amplitude becomes very small). When you omit it,
offset defaults to zero.

2-92

adaptfilt.nlms

Input
Argument Description

coeffs Vector composed of your initial filter coefficients.
Enter a length l vector. coeffs defaults to a
vector of zeros with length equal to the filter order.

states Your initial adaptive filter states appear in the
states vector. It must be a vector of length l-1.
states defaults to a length l-1 vector with zeros
for all of the elements.

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object you create. This table lists the properties for
normalized LMS objects, their default values, and a brief description
of the property.

Property Range Property Description

Algorithm None Reports the adaptive filter
algorithm the object uses during
adaptation

Coefficients Vector of
elements

Vector containing the initial filter
coefficients. It must be a length
l vector where l is the number
of filter coefficients. coeffs
defaults to length l vector of
zeros when you do not provide
the argument for input.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or taps

2-93

adaptfilt.nlms

Property Range Property Description

Leakage 0 to 1 NLMS leakage factor. It must
be a scalar between zero and
one. When it is less than
one, a leaky NLMS algorithm
results. leakage defaults to 1 (no
leakage).

Offset 0 or greater Specifies an optional offset for
the denominator of the step
size normalization term. You
must specify offset to be a scalar
greater than or equal to zero.
Nonzero offsets can help avoid
a divide-by-near-zero condition
that causes errors. Use this to
avoid dividing by zero (or by
very small numbers) when the
square of the input data norm
becomes very small (when the
input signal amplitude becomes
very small). When you omit it,
offset defaults to zero.

PersistentMemory false or true Determine whether the filter
states and coefficients get
restored to their starting values
for each filtering operation. The
starting values are the values in
place when you create the filter.
PersistentMemory returns to
zero any property value that the
filter changes during processing.
Property values that the filter
does not change are not affected.
Defaults to false.

2-94

adaptfilt.nlms

Property Range Property Description

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has length
equal to (l - 1).

StepSize 0 to 1 NLMS step size. It must be a
scalar between zero and one.
Setting this step size value to one
provides the fastest convergence.
step defaults to one.

Example To help you compare this algorithm’s performance to other LMS-based
algorithms, such as BLMS or LMS, this example demonstrates the
NLMS adaptive filter in use to identify the coefficients of an unknown
FIR filter of order equal to 32 — an example used in other adaptive
filter examples.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 1; % NLMS step size
offset = 50; % NLMS offset
ha = adaptfilt.nlms(32,mu,1,offset);
[y,e] = filter(ha,x,d);

2-95

adaptfilt.nlms

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

As you see from the figure, the nlms variant again closely matches the
actual filter coefficients in the unknown FIR filter.

See Also adaptfilt.ap, adaptfilt.apru, adaptfilt.lms, adaptfilt.rls,
adaptfilt.swrls

2-96

adaptfilt.pbfdaf

Purpose FIR adaptive filter that uses PBFDAF with bin step size normalization

Syntax ha = adaptfilt.pbfdaf(l,step,leakage,delta,lambda,blocklen,
offset,coeffs,states)

Description ha = adaptfilt.pbfdaf(l,step,leakage,delta,lambda,blocklen,
offset,coeffs,states) constructs a partitioned block
frequency-domain FIR adaptive filter ha that uses bin step size
normalization during adaptation.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.pbfdaf.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. L defaults
to 10.

step Step size of the adaptive filter. This is a scalar and
should lie in the range (0,1]. step defaults to 1.

leakage Leakage parameter of the adaptive filter. When
you set this argument to a value between zero and
one, a leaky version of the PBFDAF algorithm is
implemented. leakage defaults to 1— no leakage.

delta Initial common value of all of the FFT input signal
powers. Its initial value should be positive. delta
defaults to 1.

lambda Averaging factor used to compute the exponentially
windowed FFT input signal powers for the coefficient
updates. lambda should lie in the range (0,1]. lambda
defaults to 0.9.

2-97

adaptfilt.pbfdaf

Input
Argument Description

blocklen Block length for the coefficient updates. This must
be a positive integer such that (l/blocklen) is also
an integer. For faster execution, blocklen should be
a power of two. blocklen defaults to two.

offset Offset for the normalization terms in the coefficient
updates. This can be useful to avoid divide by zeros
conditions, or dividing by very small numbers, if any
of the FFT input signal powers become very small.
offset defaults to zero.

coeffs Initial time-domain coefficients of the adaptive filter.
It should be a vector of length l. The PBFDAF
algorithm uses these coefficients to compute the
initial frequency-domain filter coefficient matrix via
FFTs.

states Specifies the filter initial conditions. states defaults
to a zero vector of length l.

Properties Since your adaptfilt.pbfdaf filter is an object, it has properties that
define its behavior in operation. Note that many of the properties
are also input arguments for creating adaptfilt.pbfdaf objects. To
show you the properties that apply, this table lists and describes each
property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation.

2-98

adaptfilt.pbfdaf

Name Range Description

AvgFactor Averaging factor used to
compute the exponentially
windowed FFT input signal
powers for the coefficient
updates. AvgFactor should lie
in the range (0,1]. AvgFactor
defaults to 0.9. Called lambda
as an input argument.

BlockLength Block length for the coefficient
updates. This must be a positive
integer such that (l/blocklen)
is also an integer. For faster
execution, blocklen should
be a power of two. blocklen
defaults to two.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps.

FFTCoefficients Stores the discrete Fourier
transform of the filter
coefficients in coeffs.

FFTStates States for the FFT operation.

Leakage 0 to 1 Leakage parameter of the
adaptive filter. When you
set this argument to a value
between zero and one, a
leaky version of the PBFDAF
algorithm is implemented.
leakage defaults to 1 — no
leakage.

2-99

adaptfilt.pbfdaf

Name Range Description

Offset Offset for the normalization
terms in the coefficient updates.
This can be useful to avoid
divide by zeros conditions, or
dividing by very small numbers,
if any of the FFT input signal
powers become very small.
offset defaults to zero.

PersistentMemory false or
true

Determine whether the
filter states get restored to
their starting values for each
filtering operation. The starting
values are the values in place
when you create the filter.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does
not change are not affected.
Defaults to false.

Power A vector of 2*l elements, each
initialized with the value delta
from the input arguments.
As you filter data, Power gets
updated by the filter process.

StepSize 0 to 1 Step size of the adaptive filter.
This is a scalar and should lie
in the range (0,1]. step defaults
to 1.

Examples An example of Quadrature Phase Shift Keying (QPSK) adaptive
equalization using a 32-coefficient FIR filter.

2-100

adaptfilt.pbfdaf

D = 16; % Number of samples of delay

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel

a = [1 -0.7]; % Denominator coefficients of channel

ntr = 1000; % Number of iterations

s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband

% QPSK signal

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal

r = filter(b,a,s)+n; % Received signal

x = r(1+D:ntr+D); % Input signal (received signal)

d = s(1:ntr); % Desired signal (delayed QPSK signal)

del = 1; % Initial FFT input powers

mu = 0.1; % Step size

lam = 0.9; % Averaging factor

N = 8; % Block size

ha = adaptfilt.pbfdaf(32,mu,1,del,lam,N);

[y,e] = filter(ha,x,d);

subplot(2,2,1); plot(1:ntr,real([d;y;e]));

title('In-Phase Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,2); plot(1:ntr,imag([d;y;e]));

title('Quadrature Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,3); plot(x(ntr-100:ntr),'.');

axis([-3 3 -3 3]);

title('Received Signal Scatter Plot');

axis('square');

xlabel('Real[x]'); ylabel('Imag[x]');

grid on;

subplot(2,2,4); plot(y(ntr-100:ntr),'.');

axis([-3 3 -3 3]);

title('Equalized Signal Scatter Plot');

axis('square');

xlabel('Real[y]'); ylabel('Imag[y]');

grid on;

2-101

adaptfilt.pbfdaf

In the figure shown, the four subplots provide the details of the results
of the QPSK process used in the equalization for this example.

0 200 400 600 800 1000
−2

−1

0

1

2
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

See Also adaptfilt.fdaf, adaptfilt.pbufdaf, adaptfilt.blmsfft

References So, J.S. and K.K. Pang, “Multidelay Block Frequency Domain Adaptive
Filter,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 38,
no. 2, pp. 373-376, February 1990

Paez Borrallo, J.M.and M.G. Otero, “On The Implementation of a
Partitioned Block Frequency Domain Adaptive Filter (PBFDAF) For
Long Acoustic Echo Cancellation,” Signal Processing, vol. 27, no. 3, pp.
301-315, June 1992

2-102

adaptfilt.pbufdaf

Purpose FIR adaptive filter that uses PBUFDAF with bin step size normalization

Syntax ha = adaptfilt.pbufdaf(l,step,leakage,delta,lambda,
blocklen,...offset,coeffs,states)

Description ha = adaptfilt.pbufdaf(l,step,leakage,delta,lambda,
blocklen,...offset,coeffs,states) constructs a partitioned block
unconstrained frequency-domain FIR adaptive filter ha with bin step
size normalization.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.pbufdaf.

Input
Argument Description

l Adaptive filter length (the number of coefficients
or taps) and it must be a positive integer. L
defaults to 10.

step Step size of the adaptive filter. This is a scalar and
should lie in the range (0,1]. step defaults to 1.

leakage Leakage parameter of the adaptive filter. When
you set this argument to a value between zero and
one, a leaky version of the PBFDAF algorithm is
implemented. leakage defaults to 1 — no leakage.

delta Initial common value of all of the FFT input signal
powers. Its initial value should be positive. delta
defaults to 1.

lambda Averaging factor used to compute the
exponentially windowed FFT input signal powers
for the coefficient updates. lambda should lie in
the range (0,1]. lambda defaults to 0.9.

2-103

adaptfilt.pbufdaf

Input
Argument Description

blocklen Block length for the coefficient updates. This must
be a positive integer such that (l/blocklen) is also
an integer. For faster execution, blocklen should
be a power of two. blocklen defaults to two.

offset Offset for the normalization terms in the
coefficient updates. This can be useful to avoid
divide by zeros conditions, or dividing by very
small numbers, if any of the FFT input signal
powers become very small. offset defaults to
zero.

coeffs Initial time-domain coefficients of the adaptive
filter. It should be a vector of length l. The
PBFDAF algorithm uses these coefficients to
compute the initial frequency-domain filter
coefficient matrix via FFTs.

states Specifies the filter initial conditions. states
defaults to a zero vector of length l.

Properties Since your adaptfilt.pbufdaf filter is an object, it has properties
that define its behavior in operation. Note that many of the properties
are also input arguments for creating adaptfilt.pbufdaf objects. To
show you the properties that apply, this table lists and describes each
property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses during
adaptation

2-104

adaptfilt.pbufdaf

Name Range Description

AvgFactor Averaging factor used to
compute the exponentially
windowed FFT input signal
powers for the coefficient
updates. AvgFactor should lie
in the range (0,1]. AvgFactor
defaults to 0.9. Called lambda
as an input argument.

BlockLength Block length for the coefficient
updates. This must be a positive
integer such that (l/blocklen)
is also an integer. For faster
execution, blocklen should be a
power of two. blocklen defaults
to two.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

FFTCoefficients Stores the discrete Fourier
transform of the filter
coefficients in coeffs.

FFTStates States for the FFT operation.

Leakage 0 to 1 Leakage parameter of the
adaptive filter. When you
set this argument to a value
between zero and one, a
leaky version of the PBFDAF
algorithm is implemented.
leakage defaults to 1 — no
leakage.

2-105

adaptfilt.pbufdaf

Name Range Description

Offset Offset for the normalization
terms in the coefficient updates.
This can be useful to avoid divide
by zeros conditions, or dividing
by very small numbers, if any
of the FFT input signal powers
become very small.voffset
defaults to zero.

PersistentMemory false or
true

Determine whether the filter
states get restored to their
starting values for each filtering
operation. The starting
values are the values in place
when you create the filter.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does
not change are not affected.
Defaults to false.

Power 2*l element
vector

A vector of 2*l elements, each
initialized with the value delta
from the input arguments.
As you filter data, Power gets
updated by the filter process.

StepSize 0 to 1 Step size of the adaptive filter.
This is a scalar and should lie in
the range (0,1]. step defaults to
1.

Examples Demonstrating Quadrature Phase Shift Keying (QPSK) adaptive
equalization using a 32-coefficient FIR filter. To perform the
equalization, this example runs for 1000 iterations.

2-106

adaptfilt.pbufdaf

D = 16; % Number of samples of delay

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel

a = [1 -0.7]; % Denominator coefficients of channel

ntr= 1000; % Number of iterations

s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband QPSK

% signal

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal

r = filter(b,a,s)+n; % Received signal

x = r(1+D:ntr+D); % Input signal (received signal)

d = s(1:ntr); % Desired signal (delayed QPSK signal)

del = 1; % Initial FFT input powers

mu = 0.1; % Step size

lam = 0.9; % Averaging factor

N = 8; % Block size

ha = adaptfilt.pbufdaf(32,mu,1,del,lam,N);

[y,e] = filter(ha,x,d);

subplot(2,2,1); plot(1:ntr,real([d;y;e]));

title('In-Phase Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,2); plot(1:ntr,imag([d;y;e]));

title('Quadrature Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Received Signal Scatter Plot'); axis('square');

xlabel('Real[x]'); ylabel('Imag[x]'); grid on;

subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Equalized Signal Scatter Plot'); axis('square');

xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

You can compare this algorithm to another, such as the pbfdaf version.
Use the same example of QPSK adaptation. The following figure shows
the results.

2-107

adaptfilt.pbufdaf

0 200 400 600 800 1000
−2

−1

0

1

2

3
In−Phase Components

Time Index

S
ig

na
l V

al
ue

0 200 400 600 800 1000
−2

−1

0

1

2

3
Quadrature Components

Time Index

S
ig

na
l V

al
ue

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]
Im

ag
[y

]

Desired

Output

Error

Desired

Output

Error

See Also adaptfilt.ufdaf, adaptfilt.pbfdaf, adaptfilt.blmsfft

References So, J.S. and K.K. Pang, “Multidelay Block Frequency Domain Adaptive
Filter,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 38,
no. 2, pp. 373-376, February 1990

Paez Borrallo, J.M. and M.G. Otero, “On The Implementation of a
Partitioned Block Frequency Domain Adaptive Filter (PBFDAF) for
Long Acoustic Echo Cancellation,” Signal Processing, vol. 27, no. 3, pp.
301-315, June 1992

2-108

adaptfilt.qrdlsl

Purpose Adaptive filter that uses QR-decomposition-based LSL

Syntax ha = adaptfilt.qrdlsl(l,lambda,delta,coeffs,states)

Description ha = adaptfilt.qrdlsl(l,lambda,delta,coeffs,states) returns a
QR-decomposition-based least squares lattice adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.qrdlsl.

Input
Argument Description

l Length of the joint process filter coefficients. It
must be a positive integer and must be equal to
the length of the prediction coefficients plus one. L
defaults to 10.

lambda Forgetting factor of the adaptive filter. This is a
scalar and should lie in the range (0, 1]. lambda
defaults to 1. lambda = 1 denotes infinite memory
while adapting to find the new filter.

delta Soft-constrained initialization factor in the least
squares lattice algorithm. It should be positive.
delta defaults to 1.

coeffs Vector of initial joint process filter coefficients. It
must be a length l vector. coeffs defaults to a
length l vector of all zeros.

states Vector of the angle normalized backward prediction
error states of the adaptive filter

Properties Since your adaptfilt.qrdlsl filter is an object, it has properties that
define its behavior in operation. Note that many of the properties
are also input arguments for creating adaptfilt.qrdlsl objects. To

2-109

adaptfilt.qrdlsl

show you the properties that apply, this table lists and describes each
property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses during
adaptation

BkwdPrediction Returns the predicted samples
generated during adaptation.
Refer to [2] in the bibliography
for details about linear
prediction.

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do not
provide the argument for input.

FilterLength Any
positive
integer

Reports the length of the filter,
the number of coefficients or
taps

ForgettingFactor Forgetting factor of the adaptive
filter. This is a scalar and
should lie in the range (0,
1]. It defaults to 1. Setting
forgetting factor = 1 denotes
infinite memory while adapting
to find the new filter. Note
that this is the lambda input
argument.

2-110

adaptfilt.qrdlsl

Name Range Description

FwdPrediction Returns the predicted samples
generated during adaptation in
the forward direction. Refer to
[2] in the bibliography for details
about linear prediction.

InitFactor Soft-constrained initialization
factor. This scalar should be
positive and sufficiently large
to prevent an excessive number
of Kalman gain rescues. delta
defaults to one.

PersistentMemory false or
true

Determine whether the filter
states get restored to their
starting values for each filtering
operation. The starting values
are the values in place when
you create the filter if you
have not changed the filter
since you constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected. Defaults
to false.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has length
equal to l -1

Examples Implement Quadrature Phase Shift Keying (QPSK) adaptive
equalization using a 32-coefficient adaptive filter. To see the results of

2-111

adaptfilt.qrdlsl

the equalization process in this example, look at the figure that follows
the example code.

D = 16; % Number of samples of delay

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel

a = [1 -0.7]; % Denominator coefficients of channel

ntr= 1000; % Number of iterations

s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband

QPSK % signal

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal

r = filter(b,a,s)+n; % Received signal

x = r(1+D:ntr+D); % Input signal (received signal)

d = s(1:ntr); % Desired signal (delayed QPSK signal)

lam = 0.995; % Forgetting factor

del = 1; % Soft-constrained initialization

factor

ha = adaptfilt.qrdlsl(32,lam,del);

[y,e] = filter(ha,x,d);

subplot(2,2,1); plot(1:ntr,real([d;y;e]));

title('In-Phase Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,2); plot(1:ntr,imag([d;y;e]));

title('Quadrature Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Received Signal Scatter Plot'); axis('square');

xlabel('Real[x]'); ylabel('Imag[x]'); grid on;

subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Equalized Signal Scatter Plot'); axis('square');

xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

2-112

adaptfilt.qrdlsl

0 200 400 600 800 1000
−6

−4

−2

0

2

4

6
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−6

−4

−2

0

2

4

6
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

See Also adaptfilt.qrdrls, adaptfilt.gal, adaptfilt.ftf, adaptfilt.lsl

References Haykin, S.,Adaptive Filter Theory, 2nd Edition, Prentice Hall, N.J., 1991

2-113

adaptfilt.qrdrls

Purpose FIR adaptive filter that uses QR-decomposition-based RLS

Syntax ha = adaptfilt.qrdrls(l,lambda,sqrtcov,coeffs,states)

Description ha = adaptfilt.qrdrls(l,lambda,sqrtcov,coeffs,states)
constructs an FIR QR-decomposition-based recursive-least squares
(RLS) adaptive filter object ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.qrdrls.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer.l defaults to 10.

lambda RLS forgetting factor. This is a scalar and should lie
within the range (0, 1]. lambda defaults to 1.

sqrtcov Upper-triangular Cholesky (square root) factor of the
input covariance matrix. Initialize this matrix with a
positive definite upper triangular matrix.

coeffs Vector of initial filter coefficients. It must be a length
l vector. coeffs defaults to length l vector whose
elements are zeros.

states Vector of initial filter states. It must be a length l-1
vector. states defaults to a length l-1 vector of zeros.

Properties Since your adaptfilt.qrdrls filter is an object, it has properties that
define its behavior in operation. Note that many of the properties
are also input arguments for creating adaptfilt.qrdrls objects. To
show you the properties that apply, this table lists and describes each
property for the filter object.

2-114

adaptfilt.qrdrls

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

Coefficients Vector of length
l

Vector containing the initial
filter coefficients. It must
be a length l vector where
l is the number of filter
coefficients. coeffs defaults
to length l vector of zeros
when you do not provide the
argument for input.

FilterLength Any positive
integer

Reports the length of
the filter, the number of
coefficients or taps

ForgettingFactor Scalar Forgetting factor of the
adaptive filter. This is
a scalar and should lie
in the range (0, 1]. It
defaults to 1. Setting
forgetting factor = 1
denotes infinite memory
while adapting to find the
new filter. Note that this is
the lambda input argument.

2-115

adaptfilt.qrdrls

Name Range Description

PersistentMemory false or true Determine whether the
filter states get restored
to their starting values for
each filtering operation.
The starting values are
the values in place when
you create the filter if you
have not changed the filter
since you constructed it.
PersistentMemory returns
to zero any state that
the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to false.

SqrtCov Square matrix
with each
dimension equal
to the filter
length l

Upper-triangular Cholesky
(square root) factor of the
input covariance matrix.
Initialize this matrix with
a positive definite upper
triangular matrix.

States Vector of
elements

Vector of the adaptive
filter states. states
defaults to a vector of
zeros which has length equal
to (l + projectord - 2).

Examples System Identification of a 32-coefficient FIR filter (500 iterations).

x = randn(1,500); % Input to the filter

b = fir1(31,0.5); % FIR system to be identified

n = 0.1*randn(1,500); % Observation noise signal

d = filter(b,1,x)+n; % Desired signal

G0 = sqrt(.1)*eye(32); % Initial sqrt correlation matrix

2-116

adaptfilt.qrdrls

lam = 0.99; % RLS forgetting factor

ha = adaptfilt.qrdrls(32,lam,G0);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:500,[d;y;e]);

title('System Identification of an FIR Filter');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,1,2); stem([b.',ha.Coefficients.']);

legend('Actual','Estimated');

xlabel('Coefficient #'); ylabel('Coefficient Value');

grid on;

Using this variant of the RLS algorithm successfully identifies the
unknown FIR filter, as shown here.

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

See Also adaptfilt.rls, adaptfilt.hrls, adaptfilt.hswrls,
adaptfilt.swrls

2-117

adaptfilt.rls

Purpose FIR adaptive filter that uses direct form RLS

Syntax ha = adaptfilt.rls(l,lambda,invcov,coeffs,states)

Description ha = adaptfilt.rls(l,lambda,invcov,coeffs,states) constructs
an FIR direct form RLS adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.rls.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults
to 10.

lambda RLS forgetting factor. This is a scalar and should
lie in the range (0, 1]. lambda defaults to 1.

invcov Inverse of the input signal covariance matrix. For
best performance, you should initialize this matrix
to be a positive definite matrix.

coeffs Vector of initial filter coefficients. it must be a
length l vector. coeffs defaults to length l vector
with elements equal to zero.

states Vector of initial filter states for the adaptive filter.
It must be a length l-1 vector. states defaults to a
length l-1 vector of zeros.

Properties Since your adaptfilt.rls filter is an object, it has properties that
define its behavior in operation. Note that many of the properties are
also input arguments for creating adaptfilt.rls objects. To show you
the properties that apply, this table lists and describes each property
for the filter object.

2-118

adaptfilt.rls

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses during
adaptation.

Coefficients Vector
containing
l elements

Vector containing the initial filter
coefficients. It must be a length
l vector where l is the number of
filter coefficients. coeffs defaults
to length l vector of zeros when
you do not provide the argument
for input.

FilterLength Any
positive
integer

Reports the length of the filter,
the number of coefficients or taps.
Remember that filter length is
filter order + 1.

ForgettingFactor Scalar Forgetting factor of the adaptive
filter. This is a scalar and should
lie in the range (0, 1]. It defaults to
1. Setting forgetting factor = 1
denotes infinite memory while
adapting to find the new filter.
Note that this is the lambda input
argument.

InvCov Matrix of
size l-by-l

Upper-triangular Cholesky (square
root) factor of the input covariance
matrix. Initialize this matrix with
a positive definite upper triangular
matrix.

KalmanGain Vector of
size (l,1)

Empty when you construct the
object, this gets populated after
you run the filter.

2-119

adaptfilt.rls

Name Range Description

PersistentMemory false or
true

Determine whether the filter
states get restored to their starting
values for each filtering operation.
The starting values are the values
in place when you create the
filter if you have not changed the
filter since you constructed it.
PersistentMemory returns to zero
any state that the filter changes
during processing. Defaults to
false.

States Double
array

Vector of the adaptive filter states.
states defaults to a vector of
zeros which has length equal to
(l + projectord - 2).

Examples System Identification of a 32-coefficient FIR filter over 500 adaptation
iterations.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
P0 = 10*eye(32); % Initial sqrt correlation matrix inverse
lam = 0.99; % RLS forgetting factor
ha = adaptfilt.rls(32,lam,P0);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient valUe');

2-120

adaptfilt.rls

grid on;

In this example of adaptive filtering using the RLS algorithm to update
the filter coefficients for each iteration, the figure shown reveals the
fidelity of the derived filter after adaptation.

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue
Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t v

al
U

e

Actual

Estimated

See Also adaptfilt.hrls,adaptfilt.hswrls, adaptfilt.qrdrls

2-121

adaptfilt.sd

Purpose FIR adaptive filter that uses sign-data algorithm

Syntax ha = adaptfilt.sd(l,step,leakage,coeffs,states)

Description ha = adaptfilt.sd(l,step,leakage,coeffs,states) constructs an
FIR sign-data adaptive filter object ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.sd.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults
to 10.

step SD step size. It must be a nonnegative scalar. step
defaults to 0.1

leakage Your SD leakage factor. It must be a scalar
between 0 and 1. When leakage is less than one,
adaptfilt.sd implements a leaky SD algorithm.
When you omit the leakage property in the calling
syntax, it defaults to 1 providing no leakage in the
adapting algorithm.

coeffs Vector of initial filter coefficients. it must be a
length l vector. coeffs defaults to length l vector
with elements equal to zero.

states Vector of initial filter states for the adaptive filter.
It must be a length l-1 vector. states defaults to a
length l-1 vector of zeros.

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object you create. This table lists the properties for

2-122

adaptfilt.sd

sign-data objects, their default values, and a brief description of the
property.

Property
Default
Value Description

Al gorithm Sign-data Defines the adaptive filter
algorithm the object uses
during adaptation.

Coefficients zeros(1,l) Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do
not provide the argument for
input. Should be initialized
with the initial coefficients
for the FIR filter prior to
adapting. You need l entries in
coefficients.

FilterLength 10 Reports the length of the filter,
the number of coefficients or
taps.

Leakage 0 Specifies the leakage
parameter. Allows you to
implement a leaky algorithm.
Including a leakage factor
can improve the results of
the algorithm by forcing
the algorithm to continue to
adapt even after it reaches
a minimum value. Ranges
between 0 and 1. Defaults to 0.

2-123

adaptfilt.sd

Property
Default
Value Description

PersistentMemory false or true Determine whether the filter
states and coefficients get
restored to their starting values
for each filtering operation.
The starting values are the
values in place when you create
the filter. PersistentMemory
returns to zero any property
value that the filter changes
during processing. Property
values that the filter does
not change are not affected.
Defaults to false.

States zeros(l-1,1) Vector of the adaptive filter
states. states defaults to a
vector of zeros which has length
equal to (l - 1).

StepSize 0.1 Sets the SD algorithm step
size used for each iteration
of the adapting algorithm.
Determines both how quickly
and how closely the adaptive
filter converges to the filter
solution.

Example Adaptive line enhancement using a 32-coefficient FIR filter to perform
the enhancement. This example runs for 5000 iterations, as you see in
property iter.

d = 1; % Number of samples of delay

ntr= 5000; % Number of iterations

v = sin(2*pi*0.05*[1:ntr+d]); % Sinusoidal signal

n = randn(1,ntr+d); % Noise signal

2-124

adaptfilt.sd

x = v(1:ntr)+n(1:ntr); % Input signal (delayed desired

% signal)

d = v(1+d:ntr+d)+n(1+d:ntr+d); % Desired signal

mu = 0.0001; % Sign-data step size.

ha = adaptfilt.sd(32,mu);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);

axis([ntr-100 ntr -3 3]);

title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');

legend('Observed','Enhanced','Original');

xlabel('Time Index'); ylabel('Signal Value');

[pxx,om] = pwelch(x(ntr-1000:ntr));

pyy = pwelch(y(ntr-1000:ntr));

subplot(2,1,2);

plot(om/pi,10*log10([pxx/max(pxx),pyy/max(pyy)]));

axis([0 1 -60 20]);

legend('Observed','Enhanced');

xlabel('Normalized Frequency (\times \pi rad/sample)');

ylabel('Power Spectral Density'); grid on;

2-125

adaptfilt.sd

4900 4910 4920 4930 4940 4950 4960 4970 4980 4990 5000
−3

−2

−1

0

1

2

3
Adaptive Line Enhancement of a Noisy Sinusoidal Signal

Time Index

S
ig

na
l V

al
ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−40

−20

0

20

Normalized Frequency (× π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Observed

Enhanced

Original

Observed

Enhanced

Each of the variants — sign-data, sign-error, and sign-sign — uses
the same example. You can compare the results by viewing the figure
shown for each adaptive filter method — adaptfilt.sd, adaptfilt.se,
and adaptfilt.ss.

See Also adaptfilt.lms, adaptfilt.se, adaptfilt.ss

References Moschner, J.L., “Adaptive Filter with Clipped Input Data,” Ph.D. thesis,
Stanford Univ., Stanford, CA, June 1970.

Hayes, M., Statistical Digital Signal Processing and Modeling, New
York Wiley, 1996.

2-126

adaptfilt.se

Purpose FIR adaptive filter that uses sign-error algorithm

Syntax ha = adaptfilt.se(l,step,leakage,coeffs,states)

Description ha = adaptfilt.se(l,step,leakage,coeffs,states) constructs an
FIR sign-error adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.se.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults
to 10.

step SE step size. It must be a nonnegative scalar. You
can use maxstep to determine a reasonable range
of step size values for the signals being processed.
step defaults to 0.1

leakage Your SE leakage factor. It must be a scalar
between 0 and 1. When leakage is less than one,
adaptfilt.se implements a leaky SE algorithm.
When you omit the leakage property in the calling
syntax, it defaults to 1 providing no leakage in the
adapting algorithm.

coeffs Vector of initial filter coefficients. it must be a
length l vector. coeffs defaults to length l vector
with elements equal to zero.

states Vector of initial filter states for the adaptive filter.
It must be a length l-1 vector. states defaults to a
length l-1 vector of zeros.

2-127

adaptfilt.se

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object you create. This table lists the properties for
the sign-error SD object, their default values, and a brief description
of the property.

Property
Default
Value Description

Algorithm Sign-error Defines the adaptive filter
algorithm the object uses during
adaptation

Coefficients zeros(1,l) Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do not
provide the argument for input.
Should be initialized with the
initial coefficients for the FIR
filter prior to adapting.

FilterLength 10 Reports the length of the filter,
the number of coefficients or
taps

Leakage 1 Specifies the leakage parameter.
Allows you to implement a leaky
algorithm. Including a leakage
factor can improve the results
of the algorithm by forcing the
algorithm to continue to adapt
even after it reaches a minimum
value. Ranges between 0 and 1.
Defaults to one if omitted.

2-128

adaptfilt.se

Property
Default
Value Description

PersistentMemory false or true Determine whether the filter
states and coefficients get
restored to their starting values
for each filtering operation. The
starting values are the values in
place when you create the filter.
PersistentMemory returns to
zero any property value that the
filter changes during processing.
Property values that the filter
does not change are not affected.
Defaults to false.

States zeros(l-1,1) Vector of the adaptive filter
states. states defaults to a
vector of zeros which has length
equal to (l -1).

StepSize 0.1 Sets the SE algorithm step
size used for each iteration
of the adapting algorithm.
Determines both how quickly
and how closely the adaptive
filter converges to the filter
solution.

Use inspect(ha) to view or change the object properties graphically
using the MATLAB Property Inspector.

Examples Adaptive line enhancement using a 32-coefficient FIR filter running
over 5000 iterations.

d = 1; % Number of samples of delay
ntr= 5000; % Number of iterations
v = sin(2*pi*0.05*[1:ntr+d]); % Sinusoidal signal

2-129

adaptfilt.se

n = randn(1,ntr+d); % Noise signal
x = v(1:ntr)+n(1:ntr); % Input signal --

% (delayed desired signal)
d = v(1+d:ntr+d)+n(1+d:ntr+d); % Desired signal
mu = 0.0001; % Sign-error step size
ha = adaptfilt.se(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);
axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of Noisy Sinusoid');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));
pyy = pwelch(y(ntr-1000:ntr));
subplot(2,1,2);
plot(om/pi,10*log10([pxx/max(pxx),pyy/max(pyy)]));
axis([0 1 -60 20]);
legend('Observed','Enhanced');
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;

Compare the figure shown here to the ones for adaptfilt.sd and
adaptfilt.ss to see how the variants perform on the same example.

2-130

adaptfilt.se

4900 4910 4920 4930 4940 4950 4960 4970 4980 4990 5000
−3

−2

−1

0

1

2

3
Adaptive Line Enhancement of a Noisy Sinusoidal Signal

Time Index

S
ig

na
l V

al
ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−40

−20

0

20

Normalized Frequency (× π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Observed

Enhanced

Original

Observed

Enhanced

See Also adaptfilt.sd, adaptfilt.ss, adaptfilt.lms

References Gersho, A, “Adaptive Filtering With Binary Reinforcement,” IEEE
Trans. Information Theory, vol. IT-30, pp. 191-199, March 1984.

Hayes, M, Statistical Digital Signal Processing and Modeling, New
York, Wiley, 1996.

2-131

adaptfilt.ss

Purpose FIR adaptive filter that uses sign-sign algorithm

Syntax ha = adaptfilt.ss(l,step,leakage,coeffs,states)

Description ha = adaptfilt.ss(l,step,leakage,coeffs,states) constructs an
FIR sign-error adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.ss.

Input
Argument Description

l Adaptive filter length (the number of coefficients
or taps) and it must be a positive integer. l
defaults to 10.

step SS step size. It must be a nonnegative scalar. step
defaults to 0.1.

leakage Your SS leakage factor. It must be a scalar
between 0 and 1. When leakage is less than one,
adaptfilt.lms implements a leaky SS algorithm.
When you omit the leakage property in the calling
syntax, it defaults to 1 providing no leakage in the
adapting algorithm.

coeffs Vector of initial filter coefficients. it must be a
length l vector. coeffs defaults to length l vector
with elements equal to zero.

states Vector of initial filter states for the adaptive filter.
It must be a length l -1 vector. states defaults to
a length l-1 vector of zeros.

adaptfilt.ss can be called for a block of data, when x and d are vectors,
or in “sample by sample mode” using a For-loop with the method filter:

for n = 1:length(x)

2-132

adaptfilt.ss

ha = adaptfilt.ss(25,0.9);
[y(n),e(n)] = filter(ha,(x(n),d(n),s));
% The property values of ha may be modified here.end

Properties In the syntax for creating the adaptfilt object, most of the input
options are properties of the object you create. This table lists the
properties for sign-sign objects, their default values, and a brief
description of the property.

Property
Default
Value Description

Algorithm Sign-sign Defines the adaptive filter
algorithm the object uses during
adaptation

Coefficients zeros(1,l) Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do not
provide the argument for input.
Should be initialized with the
initial coefficients for the FIR
filter prior to adapting.

FilterLength 10 Reports the length of the filter,
the number of coefficients or
taps

2-133

adaptfilt.ss

Property
Default
Value Description

Leakage 1 Specifies the leakage parameter.
Allows you to implement a leaky
algorithm. Including a leakage
factor can improve the results
of the algorithm by forcing the
algorithm to continue to adapt
even after it reaches a minimum
value. Ranges between 0 and 1.
1 is the default value.

PersistentMemory false or true Determine whether the filter
states and coefficients get
restored to their starting values
for each filtering operation. The
starting values are the values in
place when you create the filter.
PersistentMemory returns to
zero any property value that the
filter changes during processing.
Property values that the filter
does not change are not affected.
Defaults to false.

States zeros(l-1,1) Vector of the adaptive filter
states. states defaults to a
vector of zeros which has length
equal to (l-1).

StepSize 0.1 Sets the SE algorithm step
size used for each iteration
of the adapting algorithm.
Determines both how quickly
and how closely the adaptive
filter converges to the filter
solution.

2-134

adaptfilt.ss

Examples Demonstrating adaptive line enhancement using a 32-coefficient FIR
filter provides a good introduction to the sign-sign algorithm.

d = 1; % number of samples of delay

ntr= 5000; % number of iterations

v = sin(2*pi*0.05*[1:ntr+d]); % sinusoidal signal

n = randn(1,ntr+d); % noise signal

x = v(1:ntr)+n(1:ntr); % Delayed input signal

d = v(1+d:ntr+d)+n(1+d:ntr+d); % desired signal

mu = 0.0001; % sign-sign step size

ha = adaptfilt.ss(32,mu);

[y,e] = filter(ha,x,d);

subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);

axis([ntr-100 ntr -3 3]);

title('Adaptive Line Enhancement of a Noisy Sinusoid');

legend('Observed','Enhanced','Original');

xlabel('Time Index'); ylabel('Signal Value');

[pxx,om] = pwelch(x(ntr-1000:ntr));

pyy = pwelch(y(ntr-1000:ntr));

subplot(2,1,2);

plot(om/pi,10*log10([pxx/max(pxx),pyy/max(pyy)]));

axis([0 1 -60 20]);

legend('Observed','Enhanced');

xlabel('Normalized Frequency (\times \pi rad/sample)');

ylabel('Power Spectral Density'); grid on;

This example is the same as the ones used for the sign-data and
sign-error examples. Comparing the figures shown for each of the others
lets you assess the performance of each for the same task.

2-135

adaptfilt.ss

4900 4910 4920 4930 4940 4950 4960 4970 4980 4990 5000
−3

−2

−1

0

1

2

3
Adaptive Line Enhancement of a Noisy Sinusoidal Signal

Time Index

S
ig

na
l V

al
ue

Observed

Enhanced

Original

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−40

−20

0

20

Normalized Frequency (× π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Observed

Enhanced

See Also adaptfilt.se, adaptfilt.sd, adaptfilt.lms

References Lucky, R.W, “Techniques For Adaptive Equalization of Digital
Communication Systems,” Bell Systems Technical Journal, vol. 45, pp.
255-286, Feb. 1966

Hayes, M., Statistical Digital Signal Processing and Modeling, New
York, Wiley, 1996.

2-136

adaptfilt.swftf

Purpose FIR adaptive filter that uses sliding window fast transversal LMS

Syntax ha = adaptfilt.swftf(l,delta,blocklen,gamma,gstates,
dstates,...coeffs,states)

Description ha = adaptfilt.swftf(l,delta,blocklen,gamma,gstates,
dstates,...coeffs,states) constructs a sliding window fast
transversal least squares adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.swftf.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults to
10.

delta Soft-constrained initialization factor. This scalar
should be positive and sufficiently large to maintain
stability. delta defaults to 1.

blocklen Block length of the sliding window. This must be an
integer at least as large as the filter length l, which
is the default value.

gamma Conversion factor. gamma defaults to the matrix [1 -1]
that specifies soft-constrained initialization.

gstates States of the Kalman gain updates. gstates defaults
to a zero vector of length (l + blocklen - 1).

dstates Desired signal states of the adaptive filter. dstates
defaults to a zero vector of length equal to (blocklen
- 1). For a default object, dstates is (l-1).

2-137

adaptfilt.swftf

Input
Argument Description

coeffs Vector of initial filter coefficients. It must be a length
l vector. coeffs defaults to length l vector of all
zeros.

states Vector of initial filter states. states defaults to a zero
vector of length equal to (l + blocklen - 2).

Properties Since your adaptfilt.swftf filter is an object, it has properties that
define its behavior in operation. Note that many of the properties
are also input arguments for creating adaptfilt.swftf objects. To
show you the properties that apply, this table lists and describes each
property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses during
adaptation

BkwdPredictions Returns the predicted samples
generated during adaptation.
Refer to [2] in the bibliography for
details about linear prediction.

BlockLength Block length of the sliding window.
This must be an integer at least as
large as the filter length l, which
is the default value.

2-138

adaptfilt.swftf

Name Range Description

Coefficients Vector of
elements

Vector containing the initial filter
coefficients. It must be a length l
vector where l is the number of
filter coefficients. coeffs defaults
to length l vector of zeros when
you do not provide the argument
for input.

ConversionFactor Conversion factor. Called gamma
when it is an input argument,
it defaults to the matrix [1 -1]
that specifies soft-constrained
initialization.

DesiredSignal
States

Desired signal states of the
adaptive filter. dstates defaults
to a zero vector with length equal
to (blocklen - 1).

FilterLength Any
positive
integer

Reports the length of the filter, the
number of coefficients or taps

FwdPrediction Contains the predicted values
for samples during adaptation.
Compare these to the actual
samples to get the error and
power.

InitFactor Soft-constrained initialization
factor. This scalar should be
positive and sufficiently large
to prevent an excessive number
of Kalman gain rescues. delta
defaults to one.

2-139

adaptfilt.swftf

Name Range Description

KalmanGain Empty when you construct the
object, this gets populated after
you run the filter.

KalmanGainStates Contains the states of the Kalman
gains for the adaptive algorithm.
Initialized to a vector of double
data type entries.

PersistentMemory false or
true

Determine whether the filter
states get restored to their
starting values for each filtering
operation. The starting values
are the values in place when
you create the filter if you have
not changed the filter since you
constructed it. PersistentMemory
returns to zero any state that the
filter changes during processing.
States that the filter does not
change are not affected. Defaults
to false.

States Vector of
elements,
data type
double

Vector of the adaptive filter states.
states defaults to a vector of
zeros which has length equal to (l
+ projectord - 2).

Examples Over 500 iterations, perform a system identification of a 32-coefficient
FIR filter.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal

2-140

adaptfilt.swftf

L = 32; % Adaptive filter length
del = 0.1; % Soft-constrained

% initialization factor
N = 64; % block length
ha = adaptfilt.swftf(L,del,N);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value');
grid on;

Review the figure for the results of the example. When you evaluate
the example you should get the same results, within the differences in
the random noise signal you use.

2-141

adaptfilt.swftf

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

0 5 10 15 20 25 30 35
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Desired

Output

Error

Actual

Estimated

See Also adaptfilt.ftf, adaptfilt.swrls, adaptfilt.ap, adaptfilt.apru

References Slock, D.T.M., and T. Kailath, “A Modular Prewindowing Framework
for Covariance FTF RLS Algorithms,” Signal Processing, vol. 28, pp.
47-61, 1992

Slock, D.T.M., and T. Kailath, “A Modular Multichannel
Multi-Experiment Fast Transversal Filter RLS Algorithm,” Signal
Processing, vol. 28, pp. 25-45, 1992

2-142

adaptfilt.swrls

Purpose FIR adaptive filter that uses window recursive least squares (RLS)

Syntax ha = adaptfilt.swrls(l,lambda,invcov,swblocklen,
dstates,...coeffs,states)

Description ha = adaptfilt.swrls(l,lambda,invcov,swblocklen,
dstates,...coeffs,states) constructs an FIR sliding window RLS
adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.swrls.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps). It must be a positive integer. l defaults to 10.

lambda RLS forgetting factor. This is a scalar and should lie
within the range (0, 1]. lambda defaults to 1.

invcov Inverse of the input signal covariance matrix. You
should initialize invcov to a positive definite matrix.

swblocklen Block length of the sliding window. This integer must
be at least as large as the filter length. swblocklen
defaults to 16.

dstates Desired signal states of the adaptive filter. dstates
defaults to a zero vector with length equal to
(swblocklen - 1).

coeffs Vector of initial filter coefficients. It must be a length
l vector. coeffs defaults to length l vector of all
zeros.

states Vector of initial filter states. states defaults to a
zero vector of length equal to (l + swblocklen - 2).

2-143

adaptfilt.swrls

Properties Since your adaptfilt.swrls filter is an object, it has properties that
define its behavior in operation. Note that many of the properties
are also input arguments for creating adaptfilt.swrls objects. To
show you the properties that apply, this table lists and describes each
property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

Coefficients Any vector of
l elements

Vector containing the initial
filter coefficients. It must
be a length l vector where
l is the number of filter
coefficients. coeffs defaults
to length l vector of zeros
when you do not provide the
argument for input.

DesiredSignalStates Vector Desired signal states of the
adaptive filter. dstates
defaults to a zero vector
with length equal to
(swblocklen - 1).

FilterLength Any positive
integer

Reports the length of
the filter, the number of
coefficients or taps

2-144

adaptfilt.swrls

Name Range Description

ForgettingFactor Scalar Forgetting factor of the
adaptive filter. This is
a scalar and should lie
in the range (0, 1]. It
defaults to 1. Setting
forgetting factor = 1
denotes infinite memory
while adapting to find the
new filter. Note that this is
the lambda input argument.

InvCov Matrix Square matrix with each
dimension equal to the filter
length l.

KalmanGain Vector with
dimensions
(l,1)

Empty when you construct
the object, this gets populated
after you run the filter.

PersistentMemory false or
true

Determine whether the
filter states get restored
to their starting values for
each filtering operation.
The starting values are
the values in place when
you create the filter if you
have not changed the filter
since you constructed it.
PersistentMemory returns
to zero any state that
the filter changes during
processing. Defaults to
false.

2-145

adaptfilt.swrls

Name Range Description

States Vector of
elements,
data type
double

Vector of the adaptive
filter states. states
defaults to a vector of
zeros which has length equal
to (l + swblocklen - 2)

SwBlockLength Integer Block length of the sliding
window. This integer must
be at least as large as the
filter length. swblocklen
defaults to 16.

Examples System Identification of a 32-coefficient FIR filter. Use 500 iterations to
adapt to the unknown filter. After the example code, you see a figure
that plots the results of the running the code.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
P0 = 10*eye(32); % Initial correlation matrix inverse
lam = 0.99; % RLS forgetting factor
N = 64; % Block length
ha = adaptfilt.swrls(32,lam,P0,N);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value');
grid on;

In the figure you see clearly that the adaptive filter process successfully
identified the coefficients of the unknown FIR filter. You knew it

2-146

adaptfilt.swrls

had to or many things that you take for granted, such as modems on
computers, would not work.

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hswrls

2-147

adaptfilt.tdafdct

Purpose Adaptive filter that uses discrete cosine transform

Syntax ha = adaptfilt.tdafdct(l,step,leakage,offset,delta,lambda,
coeffs,states)

Description ha = adaptfilt.tdafdct(l,step,leakage,offset,delta,lambda,
coeffs,states) constructs a transform-domain adaptive filter ha object
that uses the discrete cosine transform to perform filter adaptation.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.tdafdct.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults
to 10.

step Adaptive filter step size. It must be a nonnegative
scalar. You can use maxstep to determine a
reasonable range of step size values for the signals
being processed. step defaults to 0.

leakage Leakage parameter of the adaptive filter. When
you set this argument to a value between zero and
one, you are implementing a leaky version of the
TDAFDCT algorithm. leakage defaults to 1 — no
leakage.

offset Offset for the normalization terms in the coefficient
updates. You can use this argument to avoid dividing
by zero or by very small numbers when any of the
FFT input signal powers become very small. offset
defaults to zero.

2-148

adaptfilt.tdafdct

Input
Argument Description

delta Initial common value of all of the transform domain
powers. Its initial value should be positive. delta
defaults to 5.

lambda Averaging factor used to compute the
exponentially-windowed estimates of the
powers in the transformed signal bins for the
coefficient updates. lambda should lie between zero
and one. For default filter objects, lambda equals (1 -
step).

coeffs Initial time domain coefficients of the adaptive filter.
Set it to be a length l vector. coeffs defaults to a
zero vector of length l.

states Initial conditions of the adaptive filter. states
defaults to a zero vector with length equal to (l - 1).

Properties Since your adaptfilt.tdafdct filter is an object, it has properties
that define its behavior in operation. Note that many of the properties
are also input arguments for creating adaptfilt.tdafdct objects. To
show you the properties that apply, this table lists and describes each
property for the transform domain filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation.

2-149

adaptfilt.tdafdct

Name Range Description

AvgFactor Averaging factor
used to compute the
exponentially-windowed
estimates of the powers in the
transformed signal bins for the
coefficient updates. AvgFactor
should lie between zero and
one. For default filter objects,
AvgFactor equals (1 - step).
lambda is the input argument
that represent AvgFactor.

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do
not provide the argument for
input.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps.

Leakage 0 to 1 Leakage parameter of the
adaptive filter. When you
set this argument to a value
between zero and one, you are
implementing a leaky version
of the TDAFDFT algorithm.
leakage defaults to 1 — no
leakage.

2-150

adaptfilt.tdafdct

Name Range Description

Offset Offset for the normalization
terms in the coefficient
updates. You can use this
argument to avoid dividing by
zeros or by very small numbers
when any of the FFT input
signal powers become very
small. offset defaults to zero.

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter. PersistentMemory
returns to zero any state
that the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to false.

Power 2*l element
vector

A vector of 2*l elements,
each initialized with the
value delta from the input
arguments. As you filter data,
Power gets updated by the
filter process.

2-151

adaptfilt.tdafdct

Name Range Description

States Vector of
elements, data
type double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has length
equal to (l + projectord - 2).

StepSize 0 to 1 Step size. It must be a
nonnegative scalar, greater
than zero and less than or
equal to 1. You can use
maxstep to determine a
reasonable range of step size
values for the signals being
processed. step defaults to 0.

For checking the values of properties for an adaptive filter object, use
get(ha) or enter the object name, without a trailing semicolon, at the
MATLAB prompt.

Examples Using 1000 iterations, perform a Quadrature Phase Shift Keying
(QPSK) adaptive equalization using a 32-coefficient FIR filter.

D = 16; % Number of samples of delay

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel

a = [1 -0.7]; % Denominator coefficients of channel

ntr= 1000; % Number of iterations

s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband

% QPSK signal

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal

r = filter(b,a,s)+n; % Received signal

x = r(1+D:ntr+D); % Input signal (received signal)

d = s(1:ntr); % Desired signal (delayed QPSK signal)

L = 32; % filter length

mu = 0.01; % Step size

ha = adaptfilt.tdafdct(L,mu);

[y,e] = filter(ha,x,d);

subplot(2,2,1); plot(1:ntr,real([d;y;e]));

2-152

adaptfilt.tdafdct

title('In-Phase Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,2); plot(1:ntr,imag([d;y;e]));

title('Quadrature Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Received Signal Scatter Plot'); axis('square');

xlabel('Real[x]'); ylabel('Imag[x]'); grid on;

subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Equalized Signal Scatter Plot'); axis('square');

xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

Compare the plots shown in this figure to those in the other time
domain filter variations. The comparison should help you select and
understand how the variants differ.

2-153

adaptfilt.tdafdct

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5
In−Phase Components

Time Index

S
ig

na
l V

al
ue

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5
Quadrature Components

Time Index

S
ig

na
l V

al
ue

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]
Im

ag
[y

]

Desired

Output

Error

Desired

Output

Error

See Also adaptfilt.tdafdft, adaptfilt.fdaf, adaptfilt.blms

References Haykin, S.,Adaptive Filter Theory, 3rd Edition, Prentice Hall, N.J., 1996.

2-154

adaptfilt.tdafdft

Purpose Adaptive filter that uses discrete Fourier transform

Syntax ha = adaptfilt.tdafdft(l,step,leakage,offset,
delta,lambda,...coeffs,states)

Description ha = adaptfilt.tdafdft(l,step,leakage,offset,
delta,lambda,...coeffs,states) constructs a transform-domain
adaptive filter object ha using a discrete Fourier transform.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.tdafdft.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults
to 10.

step Adaptive filter step size. It must be a nonnegative
scalar. You can use maxstep to determine a
reasonable range of step size values for the signals
being processed. step defaults to 0.

leakage Leakage parameter of the adaptive filter. When
you set this argument to a value between zero and
one, you are implementing a leaky version of the
TDAFDFT algorithm. leakage defaults to 1 — no
leakage.

offset Offset for the normalization terms in the coefficient
updates. You can use this argument to avoid dividing
by zeros or by very small numbers when any of the
FFT input signal powers become very small. offset
defaults to zero.

2-155

adaptfilt.tdafdft

Input
Argument Description

delta Initial common value of all of the transform domain
powers. Its initial value should be positive. delta
defaults to 5.

lambda Averaging factor used to compute the
exponentially-windowed estimates of the
powers in the transformed signal bins for the
coefficient updates. lambda should lie between zero
and one. For default filter objects, LAMBDA equals
(1 - step).

coeffs Initial time domain coefficients of the adaptive filter.
Set it to be a length l vector. coeffs defaults to a
zero vector of length l.

states Initial conditions of the adaptive filter. states
defaults to a zero vector with length equal to (l - 1).

Properties Since your adaptfilt.tdafdft filter is an object, it has properties
that define its behavior in operation. Note that many of the properties
are also input arguments for creating adaptfilt.tdafdft objects. To
show you the properties that apply, this table lists and describes each
property for the transform domain filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

2-156

adaptfilt.tdafdft

Name Range Description

AvgFactor Averaging factor
used to compute the
exponentially-windowed
estimates of the powers in the
transformed signal bins for the
coefficient updates. AvgFactor
should lie between zero and
one. For default filter objects,
AvgFactor equals (1 - step).
lambda is the input argument
that represent AvgFactor.

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do not
provide the argument for input.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

Leakage 0 to 1 Leakage parameter of the
adaptive filter. When you
set this argument to a value
between zero and one, you are
implementing a leaky version
of the TDAFDFT algorithm.
leakage defaults to 1 — no
leakage.

2-157

adaptfilt.tdafdft

Name Range Description

Offset Offset for the normalization
terms in the coefficient updates.
You can use this argument to
avoid dividing by zeros or by
very small numbers when any
of the FFT input signal powers
become very small. offset
defaults to zero.

PersistentMemory false or true Determines whether the
filter states get restored
to their starting values for
each filtering operation. The
starting values are the values
in place when you create the
filter. PersistentMemory
returns to zero any state
that the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to false.

Power 2*l element
vector

A vector of 2*l elements, each
initialized with the value delta
from the input arguments.
As you filter data, Power gets
updated by the filter process.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has length
equal to (l + projectord - 2).

StepSize 0 to 1 Step size. It must be a
nonnegative scalar, greater
than zero and less than or
equal to 1. step defaults to 0.

2-158

adaptfilt.tdafdft

Examples Quadrature Phase Shift Keying (QPSK) adaptive equalization using a
32-coefficient FIR filter (1000 iterations).

D = 16; % Number of samples of delay

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel

a = [1 -0.7]; % Denominator coefficients of channel

ntr= 1000; % Number of iterations

s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband

% QPSK signal

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal

r = filter(b,a,s)+n; % Received signal

x = r(1+D:ntr+D); % Input signal (received signal)

d = s(1:ntr); % Desired signal (delayed QPSK signal)

L = 32; % filter length

mu = 0.01; % Step size

ha = adaptfilt.tdafdft(L,mu);

[y,e] = filter(ha,x,d);

subplot(2,2,1); plot(1:ntr,real([d;y;e]));

title('In-Phase Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,2); plot(1:ntr,imag([d;y;e]));

title('Quadrature Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Received Signal Scatter Plot'); axis('square');

xlabel('Real[x]'); ylabel('Imag[x]'); grid on;

subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Equalized Signal Scatter Plot'); axis('square');

xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

All of the time domain adaptive filter reference pages use this QPSK
example. By comparing the results for each variation you get an idea of
the differences in the way each one performs.

This figure demonstrates the results of running the example code
shown.

2-159

adaptfilt.tdafdft

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]
Im

ag
[y

]

See Also adaptfilt.tdafdct, adaptfilt.fdaf, adaptfilt.blms

References Haykin, S.,Adaptive Filter Theory, 3rd Edition, Prentice Hall, N.J., 1996

2-160

adaptfilt.ufdaf

Purpose FIR adaptive filter that uses unconstrained frequency-domain with
quantized step size normalization

Syntax ha = adaptfilt.ufdaf(l,step,leakage,delta,lambda,blocklen,
offset,coeffs,states)

Description ha = adaptfilt.ufdaf(l,step,leakage,delta,lambda,blocklen,
offset,coeffs,states)

constructs an unconstrained frequency-domain FIR adaptive filter ha
with quantized step size normalization.

Input Arguments

Entries in the following table describe the input arguments for
adaptfilt.ufdaf.

Input
Argument Description

l Adaptive filter length (the number of coefficients or
taps) and it must be a positive integer. l defaults
to 10.

step Adaptive filter step size. It must be a nonnegative
scalar. step defaults to 0.

leakage Leakage parameter of the adaptive filter. When
you set this argument to a value between zero and
one, you are implementing a leaky version of the
UFDAF algorithm. leakage defaults to 1 — no
leakage.

delta Initial common value of all of the FFT input signal
powers. the initial value of delta should be positive,
and it defaults to 1.

2-161

adaptfilt.ufdaf

Input
Argument Description

lambda Specifies the averaging factor used to compute the
exponentially-windowed FFT input signal powers
for the coefficient updates. lambda should lie in
the range (0,1]. For default UFDAF filter objects,
lambda defaults to 0.9.

blocklen Block length for the coefficient updates. This
must be a positive integer. For faster execution,
(blocklen l) should be a power of two. blocklen
defaults to l.

offset Offset for the normalization terms in the coefficient
updates. This can help you avoid divide by zero
conditions, or divide by very small numbers
conditions, when any of the FFT input signal
powers become very small. Default value is zero.

coeffs Initial time-domain coefficients of the adaptive
filter. It should be a length l vector. The filter
object uses these coefficients to compute the initial
frequency-domain filter coefficients via an FFT
computed after zero-padding the time-domain
vector by blocklen.

states Adaptive filter states. states defaults to a zero
vector with length equal to l.

Properties Since your adaptfilt.ufdaf filter is an object, it has properties that
define its behavior in operation. Note that many of the properties
are also input arguments for creating adaptfilt.ufdaf objects. To
show you the properties that apply, this table lists and describes each
property for the filter object.

2-162

adaptfilt.ufdaf

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

AvgFactor Specifies the averaging
factor used to compute the
exponentially-windowed
FFT input signal powers
for the coefficient updates.
AvgFactor should lie in the
range (0,1]. For default
UFDAF filter objects,
AvgFactor defaults to 0.9.
Note that AvgFactor and
lambda are the same thing —
lambda is an input argument
and AvgFactor a property of
the object.

BlockLength Block length for the coefficient
updates. This must be a
positive integer. For faster
execution, (blocklen + l)
should be a power of two.
blocklen defaults to l.

FFTCoefficients Stores the discrete Fourier
transform of the filter
coefficients in coeffs.

FFTStates States for the FFT operation.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

2-163

adaptfilt.ufdaf

Name Range Description

Leakage 0 to 1 Leakage parameter of the
adaptive filter. When you
set this argument to a value
between zero and one, you are
implementing a leaky version
of the UFDAF algorithm.
leakage defaults to 1 — no
leakage.

Offset Offset for the normalization
terms in the coefficient
updates. This can help
you avoid divide by zero
conditions, or divide by very
small numbers conditions,
when any of the FFT input
signal powers become very
small. Default value is zero.

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter. PersistentMemory
returns to zero any state
that the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to false.

2-164

adaptfilt.ufdaf

Name Range Description

Power 2*l element
vector

A vector of 2*l elements,
each initialized with the
value delta from the input
arguments. As you filter data,
Power gets updated by the
filter process.

StepSize 0 to 1 Adaptive filter step size.
It must be a nonnegative
scalar. You can use maxstep
to determine a reasonable
range of step size values for
the signals being processed.
step defaults to 0.

Examples Show an example of Quadrature Phase Shift Keying (QPSK) adaptive
equalization using a 32-coefficient adaptive filter. For fidelity, use 1024
iterations. The figure that follows the code provides the information you
need to assess the performance of the equalization process.

D = 16; % Number of samples of delay

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel

a = [1 -0.7]; % Denominator coefficients of channel

ntr= 1024; % Number of iterations

s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband

% QPSK signal

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal

r = filter(b,a,s)+n; % Received signal

x = r(1+D:ntr+D); % Input signal (received signal)

d = s(1:ntr); % Desired signal (delayed QPSK signal)

del = 1; % Initial FFT input powers

mu = 0.1; % Step size

lam = 0.9; % Averaging factor

ha = adaptfilt.ufdaf(32,mu,1,del,lam);

[y,e] = filter(ha,x,d);

2-165

adaptfilt.ufdaf

subplot(2,2,1);

plot(1:1000,real([d(1:1000);y(1:1000);e(1:1000)]));

title('In-Phase Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,2); plot(1:ntr,imag([d;y;e]));

title('Quadrature Components');

legend('Desired','Output','Error');

xlabel('Time Index'); ylabel('Signal Value');

subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Received Signal Scatter Plot'); axis('square');

xlabel('Real[x]'); ylabel('Imag[x]'); grid on;

subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);

title('Equalized Signal Scatter Plot'); axis('square');

xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
In−Phase Components

Time Index

S
ig

na
l V

al
ue

0 500 1000 1500
−3

−2

−1

0

1

2
Quadrature Components

Time Index

S
ig

na
l V

al
ue

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

Desired

Output

Error

Desired

Output

Error

2-166

adaptfilt.ufdaf

See Also adaptfilt.fdaf, adaptfilt.pbufdaf, adaptfilt.blms,
adaptfilt.blmsfft

References Shynk, J.J.,“Frequency-domain and Multirate Adaptive Filtering,”
IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992

2-167

allpassbpc2bpc

Purpose Allpass filter for complex bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
first-order allpass mapping filter for performing a complex bandpass
to complex bandpass frequency transformation. This transformation
effectively places two features of an original filter, located at frequencies
Wo1 and Wo2, at the required target frequency locations Wt1 and Wt2.
It is assumed that Wt2 is greater than Wt1. In most of the cases the
features selected for the transformation are the band edges of the
filter passbands. In general it is possible to select any feature; e.g.,
the stopband edge, the DC, the deep minimum in the stopband, or
other ones.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

This transformation can also be used for transforming other types of
filters; e.g., complex notch filters or resonators can be repositioned at
two distinct desired frequencies at any place around the unit circle.
This is very attractive for adaptive systems.

Examples Design the allpass filter changing the complex bandpass filter with the
band edges originally at Wo1=0.2 and Wo2=0.4 to the new band edges of
Wt1=0.3 and Wt2=0.6 precisely defined:

Wo = [0.2, 0.4];
Wt = [0.3, 0.6];
[AllpassNum, AllpassDen] = allpassbpc2bpc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[ha, f] = freqz(AllpassNum, AllpassDen, 'whole');

2-168

allpassbpc2bpc

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi,angle(ha)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

To demonstrate, the following figure shows the mapping function
between old and new frequencies.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping function Wo(Wt)

New frequency, Wt

O
ld

 fr
eq

ue
nc

y,
 W

o

2-169

allpassbpc2bpc

Arguments Variable Description

Wo Frequency values to be transformed from the
prototype filter

Wt Desired frequency locations in the transformed
target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1
corresponding to half the sample rate.

See Also iirbpc2bpc, zpkbpc2bpc

2-170

allpasslp2bp

Purpose Allpass filter for lowpass to bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
second-order allpass mapping filter for performing a real lowpass to real
bandpass frequency transformation. This transformation effectively
places one feature of an original filter, located at frequency -Wo, at
the required target frequency location, Wt1, and the second feature,
originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. This transformation implements the “DC mobility,”
which means that the Nyquist feature stays at Nyquist, but the DC
feature moves to a location dependent on the selection of Wt.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation
is not restricted only to the cutoff frequency of an original lowpass filter.
In general it is possible to select any feature; e.g., the stopband edge,
the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming
other types of filters; e.g., real notch filters or resonators can be doubled
and repositioned at two distinct desired frequencies.

Examples Design the allpass filter changing the lowpass filter with cutoff
frequency at Wo=0.5 to the real bandpass filter with cutoff frequencies
at Wt1=0.25 and Wt2=0.375:

Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bp(Wo, Wt);

2-171

allpasslp2bp

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same
way for both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

Shown in the figure, with the x-axis as the new frequency, you see the
mapping filter for the example.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

2-172

allpasslp2bp

Arguments Variable Description

Wo Frequency value to be transformed from the
prototype filter

Wt Desired frequency locations in the transformed
target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also iirlp2bp, zpklp2bp

References Constantinides, A.G., “Spectral transformations for digital filters,”
IEEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems,
Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium
on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

2-173

allpasslp2bpc

Purpose Allpass filter for lowpass to complex bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
first-order allpass mapping filter for performing a real lowpass to
complex bandpass frequency transformation. This transformation
effectively places one feature of an original filter, located at frequency
-Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that
Wt2 is greater than Wt1.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation
is not restricted only to the cutoff frequency of an original lowpass filter.
In general it is possible to select any feature; e.g., the stopband edge,
the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming
other types of filters; e.g., real notch filters or resonators can be doubled
and positioned at two distinct desired frequencies at any place around
the unit circle forming a pair of complex notches/resonators. This
transformation can be used for designing bandpass filters for radio
receivers from the high-quality prototype lowpass filter.

Examples Design the allpass filter changing the real lowpass filter with the cutoff
frequency of Wo=0.5 into a complex bandpass filter with band edges of
Wt1=0.2 and Wt2=0.4 precisely defined:

Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bpc(Wo, Wt);

2-174

allpasslp2bpc

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo.*[-1,1], 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

The figure shown here details the mapping filter provided by the
function.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

2-175

allpasslp2bpc

Arguments Variable Description

Wo Frequency value to be transformed from the
prototype filter. It should be normalized to be
between 0 and 1, with 1 corresponding to half the
sample rate.

Wt Desired frequency locations in the transformed
target filter. They should be normalized to be
between -1 and 1, with 1 corresponding to half the
sample rate.

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

See Also iirlp2bpc, zpklp2bpc

2-176

allpasslp2bs

Purpose Allpass filter for lowpass to bandstop transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
second-order allpass mapping filter for performing a real lowpass to real
bandstop frequency transformation. This transformation effectively
places one feature of an original filter, located at frequency -Wo, at
the required target frequency location, Wt1, and the second feature,
originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is greater
than Wt1. This transformation implements the "Nyquist Mobility," which
means that the DC feature stays at DC, but the Nyquist feature moves
to a location dependent on the selection of Wo and Wt.

Relative positions of other features of an original filter change in
the target filter. This means that it is possible to select two features
of an original filter, F1 and F2, with F1 preceding F2. After the
transformation feature F2 will precede F1 in the target filter. However,
the distance between F1 and F2 will not be the same before and after
the transformation.

Choice of the feature subject to the lowpass to bandstop transformation
is not restricted only to the cutoff frequency of an original lowpass filter.
In general it is possible to select any feature; e.g., the stopband edge,
the DC, the deep minimum in the stopband, or other ones.

Examples Design the allpass filter changing the lowpass filter with cutoff
frequency at Wo=0.5 to the real bandstop filter with cutoff frequencies
at Wt1=0.25 and Wt2=0.375:

Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bs(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

2-177

allpasslp2bs

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same
way for both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

In the figure, you find the mapping filter function as determined by the
example. Note the response is normalized to π, as mentioned earlier.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

2-178

allpasslp2bs

Arguments Variable Description

Wo Frequency value to be transformed from the
prototype filter

Wt Desired frequency locations in the transformed
target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also iirlp2bs, zpklp2bs

References Constantinides, A.G., “Spectral transformations for digital filters,”
IEEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems,
Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium
on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

2-179

allpasslp2bsc

Purpose Allpass filter for lowpass to complex bandstop transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bsc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bsc(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
first-order allpass mapping filter for performing a real lowpass to
complex bandstop frequency transformation. This transformation
effectively places one feature of an original filter, located at frequency
-Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed
that Wt2 is greater than Wt1. Additionally the transformation swaps
passbands with stopbands in the target filter.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation
is not restricted only to the cutoff frequency of an original lowpass filter.
In general it is possible to select any feature; e.g., the stopband edge,
the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming
other types of filters; e.g., real notch filters or resonators can be doubled
and positioned at two distinct desired frequencies at any place around
the unit circle forming a pair of complex notches/resonators. This
transformation can be used for designing bandstop filters for band
attenuation or frequency equalizers, from the high-quality prototype
lowpass filter.

Examples Design the allpass filter changing the real lowpass filter with the cutoff
frequency of Wo=0.5 into a complex bandstop filter with band edges of
Wt1=0.2 and Wt2=0.4 precisely defined:

Wo = 0.5;

2-180

allpasslp2bsc

Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bsc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo.*[1,-1], 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

We plot the resulting allpass mapping function response in this figure.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

2-181

allpasslp2bsc

Arguments Variable Description

Wo Frequency value to be transformed from the
prototype filter. It should be normalized to be
between 0 and 1, with 1 corresponding to half the
sample rate.

Wt Desired frequency locations in the transformed
target filter. They should be normalized to be
between -1 and 1, with 1 corresponding to half the
sample rate.

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

See Also iirlp2bsc, zpklp2bsc

2-182

allpasslp2hp

Purpose Allpass filter for lowpass to highpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
first-order allpass mapping filter for performing a real lowpass to real
highpass frequency transformation. This transformation effectively
places one feature of an original filter, located originally at frequency, Wo,
at the required target frequency location, Wt, at the same time rotating
the whole frequency response by half of the sampling frequency. Result
is that the DC and Nyquist features swap places.

Relative positions of other features of an original filter change in
the target filter. This means that it is possible to select two features
of an original filter, F1 and F2, with F1 preceding F2. After the
transformation feature F2 will precede F1 in the target filter. However,
the distance between F1 and F2 will not be the same before and after
the transformation.

Choice of the feature subject to the lowpass to highpass transformation
is not restricted to the cutoff frequency of an original lowpass filter. In
general it is possible to select any feature; e.g., the stopband edge, the
DC, the deep minimum in the stopband.

Lowpass to highpass transformation can also be used for transforming
other types of filters; e.g., notch filters or resonators can change
their position in a simple way by using the lowpass to highpass
transformation.

Examples Design the allpass filter changing the lowpass filter to the highpass
filter with its cutoff frequency moved from Wo=0.5 to Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2hp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

2-183

allpasslp2hp

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same
way for both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

For transforming your lowpass filter to an highpass variation, the
mapping function shown in this figure does the job.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

2-184

allpasslp2hp

Arguments Variable Description

Wo Frequency value to be transformed from the
prototype filter

Wt Desired frequency location in the transformed
target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also iirlp2hp, zpklp2hp

References Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems,
Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium
on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Frequency transformations for digital filters,”
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

2-185

allpasslp2lp

Purpose Allpass filter for lowpass to lowpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2lp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2lp(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
first-order allpass mapping filter for performing a real lowpass to real
lowpass frequency transformation. This transformation effectively
places one feature of an original filter, located originally at frequency Wo,
at the required target frequency location, Wt.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation
is not restricted to the cutoff frequency of an original lowpass filter. In
general it is possible to select any feature; e.g., the stopband edge, the
DC, the deep minimum in the stopband and so on.

Lowpass to lowpass transformation can also be used for transforming
other types of filters; e.g., notch filters or resonators can change
their position in a simple way by applying the lowpass to lowpass
transformation.

Examples Design the allpass filter changing the lowpass filter cutoff frequency
originally at Wo=0.5 to Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2lp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

2-186

allpasslp2lp

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same
way for both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

As shown in the figure, allpasslp2lp generates a mapping function
that converts your prototype lowpass filter to a target lowpass filter
with different passband specifications.

2-187

allpasslp2lp

Arguments Variable Description

Wo Frequency value to be transformed from the
prototype filter

Wt Desired frequency location in the transformed
target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also iirlp2lp, zpklp2lp

References Constantinides, A.G., “Spectral transformations for digital filters,”
IEEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems,
Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium
on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Frequency transformations for digital filters,”
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

2-188

allpasslp2mb

Purpose Allpass filter for lowpass to M-band transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt,Pass)

Description [AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
Mth-order allpass mapping filter for performing a real lowpass to real
multipassband frequency transformation. Parameter M is the number
of times an original feature is replicated in the target filter. This
transformation effectively places one feature of an original filter, located
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.
By default the DC feature is kept at its original location.

[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt,Pass) allows
you to specify an additional parameter, Pass, which chooses between
using the "DC Mobility" and the “Nyquist Mobility.” In the first case
the Nyquist feature stays at its original location and the DC feature is
free to move. In the second case the DC feature is kept at an original
frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted
to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can be easily replicated at a
number of required frequency locations without redesigning them. A
good application would be an adaptive tone cancellation circuit reacting
to the changing number and location of tones.

2-189

allpasslp2mb

Examples Design the allpass filter changing the real lowpass filter with the cutoff
frequency of Wo=0.5 into a real multiband filter with band edges of
Wt=[1:2:9]/10 precisely defined:

Wo = 0.5;
Wt = [1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mb(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same
way for both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

As the figure shows, the mapping function, or mapping filter, creates
more than one band from your prototype.

2-190

allpasslp2mb

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

Arguments Variable Description

Wo Frequency value to be transformed from the
prototype filter

Wt Desired frequency locations in the transformed
target filter

Pass Choice ('pass'/'stop') of passband/stopband at
DC, 'pass' being the default

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

2-191

allpasslp2mb

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also iirlp2mb, zpklp2mb

References Franchitti, J.C., “All-pass filter interpolation and frequency
transformation problems,“MSc Thesis, Dept. of Electrical and Computer
Engineering, University of Colorado, 1985.

Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation
and frequency transformation problem,” Proceedings 20th Asilomar
Conference on Signals, Systems and Computers, Pacific Grove,
California, pp. 164-168, November 1986.

Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7,
Reading, Massachusetts, Addison-Wesley, 1987.

Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur
Algorithm for frequency transformations, Linear Circuits, Systems and
Signal Processing: Theory and Application, C. J. Byrnes et al Eds,
Amsterdam: Elsevier, 1988.

2-192

allpasslp2mbc

Purpose Allpass filter for lowpass to complex M-band transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
Mth-order allpass mapping filter for performing a real lowpass to
complex multipassband frequency transformation. Parameter M is the
number of times an original feature is replicated in the target filter. This
transformation effectively places one feature of an original filter, located
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted
to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can be easily replicated at a
number of required frequency locations without the need to design them
again. A good application would be an adaptive tone cancellation circuit
reacting to the changing number and location of tones.

Examples Design the allpass filter changing the real lowpass filter with the cutoff
frequency of Wo=0.5 into a complex multiband filter with band edges of
Wt=[-3+1:2:9]/10 precisely defined:

Wo = 0.5;
Wt = [-3+1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mbc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

2-193

allpasslp2mbc

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same
way for both positive and negative frequencies:

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

In this example, the resulting mapping function converts real filters to
multiband complex filters.

−0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

2-194

allpasslp2mbc

Arguments Variable Description

Wo Frequency value to be transformed from the
prototype filter. It should be normalized to be
between 0 and 1, with 1 corresponding to half
the sample rate.

Wt Desired frequency locations in the transformed
target filter. They should be normalized to be
between -1 and 1, with 1 corresponding to half
the sample rate.

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

See Also iirlp2mbc, zpklp2mbc

2-195

allpasslp2xc

Purpose Allpass filter for lowpass to complex N-point transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2xc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2xc(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
Nth-order allpass mapping filter, where N is the allpass filter order,
for performing a real lowpass to complex multipoint frequency
transformation. Parameter N also specifies the number of replicas of the
prototype filter created around the unit circle after the transformation.
This transformation effectively places N features of the, original filter
located at frequencies Wo1,...,WoN, at the required target frequency
locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same
in the target filter for the Nyquist mobility and are reversed for the
DC mobility. For the Nyquist mobility this means that it is possible to
select two features of an original filter, F1 and F2, with F1 preceding
F2. Feature F1 will still precede F2 after the transformation. However,
the distance between F1 and F2 will not be the same before and after
the transformation. For DC mobility feature F2 will precede F1 after
the transformation.

Choice of the feature subject to this transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible
to select any feature; e.g., the stopband edge, the DC, the deep minimum
in the stopband, or other ones. The only condition is that the features
must be selected in such a way that when creating N bands around the
unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can be easily replicated at a
number of required frequency locations. A good application would be
an adaptive tone cancellation circuit reacting to the changing number
and location of tones.

Examples Design the allpass filter moving four features of an original complex
filter given in Wo to the new independent frequency locations Wt. Please

2-196

allpasslp2xc

note that the transformation creates N replicas of an original filter
around the unit circle, where N is the order of the allpass mapping filter:

Wo = [-0.2, 0.3, -0.7, 0.4];
Wt = [0.3, 0.5, 0.7, 0.9];
[AllpassNum, AllpassDen] = allpasslp2xc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

2-197

allpasslp2xc

As shown, the mapping function copies four features of interest in your
prototype to multiple, independent locations in your target filter.

Arguments Variable Description

Wo Frequency values to be transformed from the
prototype filter

Wt Desired frequency locations in the transformed
target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1
corresponding to half the sample rate.

See Also iirlp2xc, zpklp2xc

2-198

allpasslp2xn

Purpose Allpass filter for lowpass to N-point transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt,Pass)

Description [AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
Nth-order allpass mapping filter, where N is the allpass filter order, for
performing a real lowpass to real multipoint frequency transformation.
Parameter N also specifies the number of replicas of the prototype
filter created around the unit circle after the transformation. This
transformation effectively places N features of an original filter, located
at frequencies Wo1,...,WoN, at the required target frequency locations,
Wt1,...,WtM. By default the DC feature is kept at its original location.

[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt,Pass) allows
you to specify an additional parameter, Pass, which chooses between
using the “DC Mobility” and the “Nyquist Mobility.” In the first case
the Nyquist feature stays at its original location and the DC feature is
free to move. In the second case the DC feature is kept at an original
frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter are the same
in the target filter for the Nyquist mobility and are reversed for the
DC mobility. For the Nyquist mobility this means that it is possible to
select two features of an original filter, F1 and F2, with F1 preceding
F2. Feature F1 will still precede F2 after the transformation. However,
the distance between F1 and F2 will not be the same before and after
the transformation. For DC mobility feature F2 will precede F1 after
the transformation.

Choice of the feature subject to this transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible
to select any feature; e.g., the stopband edge, the DC, the deep minimum
in the stopband, or other ones. The only condition is that the features
must be selected in such a way that when creating N bands around the
unit circle, there will be no band overlap.

2-199

allpasslp2xn

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can be easily replicated at a
number of required frequency locations without the need of designing
them again. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

Arguments Variable Description

Wo Frequency values to be transformed from the
prototype filter

Wt Desired frequency locations in the transformed target
filter

Pass Choice ('pass'/'stop') of passband/stopband at DC,
'pass' being the default

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also iirlp2xn, zpklp2xn

References Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for
Flexible IIR Filter Design,” VII European Signal Processing Conference
(EUSIPCO’94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom,
September 1994.

Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order
frequency transformations for IIR filters,” 38th Midwest Symposium on
Circuits and Systems (MWSCAS’95), Rio de Janeiro, Brazil, August
1995.

2-200

allpassrateup

Purpose Allpass filter for integer upsample transformation

Syntax [AllpassNum,AllpassDen] = allpassrateup(N)

Description [AllpassNum,AllpassDen] = allpassrateup(N) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
Nth-order allpass mapping filter for performing the rateup frequency
transformation, which creates N equal replicas of the prototype filter
frequency response.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Examples Design the allpass filter creating the effect of upsampling the digital
filter four times:

N = 4;

Choose any feature from an original filter, say at Wo=0.2:

Wo = 0.2;
Wt = Wo/N + 2*[0:N-1]/N;
[AllpassNum, AllpassDen] = allpassrateup(N);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

2-201

allpassrateup

While this creates the effect of upsampling your prototype filter,
compare the results to cicinterp for another approach to upsampling.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

Arguments Variable Description

N Frequency replication ratio (upsampling ratio)

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

See Also iirrateup, zpkrateup

2-202

allpassshift

Purpose Allpass filter for real shift transformation

Syntax [AllpassNum,AllpassDen] = allpassshift(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassshift(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the
second-order allpass mapping filter for performing a real frequency shift
transformation. This transformation places one selected feature of an
original filter, located at frequency Wo, at the required target frequency
location, Wt. This transformation implements the “DC mobility,” which
means that the Nyquist feature stays at Nyquist, but the DC feature
moves to a location dependent on the selection of Wo and Wt.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the real shift transformation is not
restricted to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the
deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types
of filters; e.g., notch filters or resonators can be moved to a different
frequency by applying a shift transformation. In such a way you can
avoid designing the filter from the beginning.

Examples Design the allpass filter precisely shifting one feature of the lowpass
filter originally at Wo=0.5 to the new frequencies of Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshift(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

2-203

allpassshift

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same
way for both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

2-204

allpassshift

Arguments Variable Description

Wo Frequency value to be transformed from the
prototype filter

Wt Desired frequency location in the transformed target
filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also iirshift, zpkshift

2-205

allpassshiftc

Purpose Allpass filter for complex shift transformation

Syntax [AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt)
[AllpassNum,AllpassDen] = allpassshiftc(0,0.5)
[AllpassNum,AllpassDen] = allpassshiftc(0,-0.5)

Description [AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt) returns the
numerator, AllpassNum, and denominator, AllpassDen, vectors of the
allpass mapping filter for performing a complex frequency shift of the
frequency response of the digital filter by an arbitrary amount.

[AllpassNum,AllpassDen] = allpassshiftc(0,0.5) calculates the
allpass filter for doing the Hilbert transformation, i.e. a 90 degree
counterclockwise rotation of an original filter in the frequency domain.

[AllpassNum,AllpassDen] = allpassshiftc(0,-0.5) calculates the
allpass filter for doing an inverse Hilbert transformation, i.e. a 90
degree clockwise rotation of an original filter in the frequency domain.

Examples Design the allpass filter precisely rotating the whole filter by the
amount defined by the location of the selected feature from an original
filter, Wo=0.5, and its required position in the target filter, Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshiftc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

2-206

allpassshiftc

The figure shows you that the transformation by the mapping filter
does exactly what you intend.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

Arguments Variable Description

Wo Frequency value to be transformed from the
prototype filter

Wt Desired frequency location in the transformed
target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

2-207

allpassshiftc

Frequencies must be normalized to be between -1 and 1, with 1
corresponding to half the sample rate.

See Also iirshiftc, zpkshiftc

References Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal
Processing, Prentice-Hall International Inc., 1989.

Dutta-Roy, S.C. and B. Kumar, “On Digital Differentiators, Hilbert
Transformers, and Half-band Low-pass Filters,” IEEE Transactions on
Education, vol. 32, pp. 314-318, August 1989.

2-208

autoscale

Purpose Automatic dynamic range scaling

Syntax autoscale(hd,x)
hnew = autoscale(hd,x)

Description autoscale(hd,x) provides dynamic range scaling for each node of the
filter hd. This method runs signal x through hd in floating-point to
simulate filtering. autoscale uses the maximum and minimum data
obtained from that simulation at each filter node to set fraction lengths
to cover the simulation full range and maximize the precision. Word
lengths are not changed during autoscaling.

hnew = autoscale(hd,x) If you request an output, autoscale returns
a new filter with the scaled fraction lengths. The original filter is not
changed.

For introductory demonstrations of the automatic scale process, refer to
the following demos in the toolbox:

• Fixed-Point Scaling of an Elliptic IIR Filter

• Floating-Point to Fixed-Point Conversion of IIR Filters

• Floating-Point to Fixed-Point Conversion of IIR Filters

Examples To demonstrate the autoscaling capability using a set of input data, this
example uses a bandpass IIR lattice filter with random input data. To
run this example in MATLAB, you must enable logging for fi objects—

fipref('LoggingMode','on')

After you have enabled logging, this example uses a lattice ARMA filter
to demonstrate automatic scaling with autoscale..

hd = design(fdesign.bandpass,'ellip');
hd = convert(hd,'latticearma');
hd.arithmetic = 'fixed';
rand('state', 4)
x = rand(100,10); % Training input data.

2-209

autoscale

hd(2) = autoscale(hd,x);
hfvt = fvtool(hd,'Analysis','magestimate',...
'Showreference','off');
legend(hfvt,'Before Autoscaling', 'After Autoscaling')

After you run autoscale, the resulting plot uses FVTool with before
and after curves.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response Estimate

Before Autoscaling
After Autoscaling

See Also qreport

2-210

block

Purpose Generate block from multirate filter

Syntax block(hm)
block(hm,'propertyname1',propertyvalue1,'propertyname2',

propertyvalue2,...)

Description block(hm) generates a Signal Processing Blockset block equivalent
to hm.

block(hm,'propertyname1',propertyvalue1,'propertyname2',propertyvalue2
generates a Signal Processing Blockset block using the options specified
in the property name/property value pairs. The valid properties
and their values are

Property Name Description and Values

Destination Determines which Simulink® model gets the
block. Enter current, new, or specify the name
of an existing subsystem with subsystemname.
Specifying new opens a new model and adds the
block. Current adds the block to your current
Simulink model. Current is the default setting.
If you provide the name of a current subsystem
in subsystemname, block adds the new block to
your specified subsystem.

Blockname Specifies the name of the generated block. The
name appears below the block in the model.
When you do not specify a block name, the
default is filter.

2-211

block

Property Name Description and Values

OverwriteBlock Tells block whether to overwrite an existing
block of the same name, or create a new block.
Off is the default setting—block does not
overwrite existing blocks with matching names.
Switching from off to on directs block to
overwrite existing blocks.

MapStates Specifies whether to apply the current filter
states to the new block. This lets you save
states from a filter object you may have used or
configured in a specific way. The default setting
of off means the states are not transferred to
the block. Choosing on preserves the current
filter states in the block.

Using block to Realize Fixed-Point Multirate Filters

When the source filter hm is fixed-point, such as an FIR decimator with
fixed-point arithmetic, block maps the fixed-point properties for hm to
the new block according to a set of rules:

• The input word and fraction lengths for the block are derived from
the block input signal. The realization process ignores the input
word and input fraction lengths that are part of the source filter
object, choosing to inherit the settings from the input data. You see a
warning message in MATLAB that points this out.

• Rounding modes that the block does not support — fix, ceil, and
convergent — convert to nearest in the filter block. Supported
rounding modes do not change. MATLAB warns you about this
change.

Other fixed-point properties map directly to settings for word and
fraction length in the realized block.

Examples Two examples of using block demonstrate the syntax capabilities. Both
examples start from an mfilt object with interpolation factor of three.

2-212

block

In the first example, use block with the default syntax, letting the
function determine the block name and configuration.

l = 3; % Interpolation factor
hm = mfilt.firdecim(l);

Now use the default syntax to create a block.

block(hm);

In this second example, define the block name to meet your needs by
using the property name/property value pair input arguments.

block(hm, 'blockname', 'firdecim');

The figure below shows the blocks in a Simulink model. When you try
these examples, you see that the second block writes over the first
block location. You can avoid this by moving the first block before you
generate the second, always naming your block with the blockname
property, or setting the Destination property to new which puts the
filter block in a new Simulink model.

See Also Refer to “Realizing Filters as Simulink Subsystem Blocks” in FDATool,
and realizemdl

2-213

butter

Purpose Butterworth IIR filter design using specification object

Syntax hd = design(d,'butter')
hd = design(d,'butter',designoption,value...)

Description hd = design(d,'butter') designs a Butterworth IIR digital filter
using the specifications supplied in the object d.

hd = design(d,'butter',designoption,value...) returns a
Butterworth IIR filter where you specify a design option and value.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as
shown.

designopts(d,'method')

For complete help about using butter, refer to the command line help
system. For example, to get specific information about using butter
with d, the specification object, enter the following at the MATLAB
prompt.

help(d,'butter')

Examples The first example constructs a default lowpass filter specification object
and uses it to design a Butterworth filter.

d = fdesign.lowpass;
designopts(d,'butter')

ans =

FilterStructure: 'df2sos'
MatchExactly: 'stopband'

hd = design(d,'butter','matchexactly','stopband');

Example 2 constructs a highpass filter specification object with order (n)
and cutoff frequency (fc) specifications, and then designs a Butterworth
filter from the object.

2-214

butter

d = fdesign.highpass('n,fc',8,.6);
design(d,'butter');

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−700

−600

−500

−400

−300

−200

−100

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

See Also cheby1, cheby2, ellip

2-215

ca2tf

Purpose Convert coupled allpass filter to transfer function from

Syntax [b,a]=ca2tf(d1,d2)
[b,a]=ca2tf(d1,d2,beta)
[b,a,bp]=ca2tf(d1,d2)
[b,a,bp]=ca2tf(d1,d2,beta)

Description [b,a]=ca2tf(d1,d2) returns the vector of coefficients b and the vector of
coefficients a corresponding to the numerator and the denominator of
the transfer function

d1 and d2 are real vectors corresponding to the denominators of the
allpass filters H1(z) and H2(z).

[b,a]=ca2tf(d1,d2,beta) where d1, d2 and beta are complex, returns
the vector of coefficients b and the vector of coefficients a corresponding
to the numerator and the denominator of the transfer function

[b,a,bp]=ca2tf(d1,d2), where d1 and d2 are real, returns the vector
bp of real coefficients corresponding to the numerator of the power
complementary filter G(z)

[b,a,bp]=ca2tf(d1,d2,beta), where d1, d2 and beta are complex,
returns the vector of coefficients bp of real or complex coefficients that
correspond to the numerator of the power complementary filter G(z)

2-216

ca2tf

Examples Create a filter, convert the filter to coupled allpass form, and convert the
result back to the original structure (create the power complementary
filter as well).

[b,a]=cheby1(10,.5,.4);

[d1,d2,beta]=tf2ca(b,a); % tf2ca returns the %
denominators of the %
allpasses.

[num,den,numpc]=ca2tf(d1,
d2,beta);

% Reconstruct the original
% filter plus the power %
complementary one.

[h,w,s]=freqz(num,den);

hpc = freqz(numpc,den);

s.plot = 'mag';

s.yunits = 'sq';

freqzplot([h hpc],w,s); % Plot the mag response of
the % original filter and
the % power complementary
one.

See Also cl2tf, iirpowcomp, tf2ca, tf2cl

2-217

cheby1

Purpose Chebyshev Type I filter using specification object

Syntax hd = design(d,'cheby1')
hd = design(d,'cheby1',designoption,value,designoption,
value,...)

Description hd = design(d,'cheby1') designs a Chebyshev I IIR digital filter
using the specifications supplied in the object d.

hd = design(d,'cheby1',designoption,value,designoption,
value,...) returns a Chebyshev I IIR filter where you specify design
options as input arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as
shown.

designopts(d,'method')

For complete help about using cheby1, refer to the command line help
system. For example, to get specific information about using cheby1
with d, the specification object, enter the following at the MATLAB
prompt.

help(d,'cheby1')

Examples These examples use filter specification objects to construct Chebyshev
type I filters. In the first example, you use the matchexactly option to
ensure the performance of the filter in the passband.

d = fdesign.lowpass

designopts(d,'cheby1')

ans =

FilterStructure: 'df2sos'

MatchExactly: 'passband'

hd = design(d,'cheby1','matchexactly','passband')

2-218

cheby1

d =

Response: 'Lowpass'

Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}

NormalizedFrequency: true

Fpass: 0.45

Fstop: 0.55

Apass: 1

Astop: 60

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'double'

sosMatrix: [5x6 double]

ScaleValues: [6x1 double]

PersistentMemory: false

cheby1 also design highpass filters, among others. Specify the filter
order, passband edge frequency. and the passband ripple to get the
filter exactly as required.

d = fdesign.highpass('n,fp,ap',7,20,.4,50)

hd = design(d,'cheby1')

d =

Response: 'Highpass'

Specification: 'N,Fp,Ap'

Description: {3x1 cell}

NormalizedFrequency: false

Fs: 50

FilterOrder: 7

Fpass: 20

Apass: 0.4

2-219

cheby1

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'double'

sosMatrix: [4x6 double]

ScaleValues: [5x1 double]

PersistentMemory: false

Use fvtool to view the resulting filter.

fvtool(hd)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−700

−600

−500

−400

−300

−200

−100

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

2-220

cheby1

By design, cheby1 returns filters that use second-order sections. For
many applications, and for most fixed-point applications, SOS filters
are particularly well-suited.

See Also butter, cheby2, ellip

2-221

cheby2

Purpose Chebyshev Type II filter using specification object

Syntax hd = design(d,'cheby2')
hd = design(d,'cheby2',designoption,value,designoption,
value,...)

Description hd = design(d,'cheby2') designs a Chebyshev II IIR digital filter
using the specifications supplied in the object d.

hd = design(d,'cheby2',designoption,value,designoption,
value,...) returns a Chebyshev II IIR filter where you specify design
options as input arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as
shown.

designopts(d,'method')

For complete help about using cheby1, refer to the command line help
system. For example, to get specific information about using cheby2
with d, the specification object, enter the following at the MATLAB
prompt.

help(d,'cheby2')

Examples These examples use filter specification objects to construct Chebyshev
type I filters. In the first example, you use the matchexactly option to
ensure the performance of the filter in the passband.

d = fdesign.lowpass;

hd = design(d,'cheby2','matchexactly','passband')

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'double'

2-222

cheby2

sosMatrix: [5x6 double]

ScaleValues: [6x1 double]

PersistentMemory: false

cheby2 also design highpass, bandpass, and bandstop filters. Here is
a highpass filter where you specify the filter order, the stopband edge
frequency. and the stopband attenuation to get the filter exactly as
required.

d = fdesign.highpass('n,fst,ast',5,20,55,50)

d =

Response: 'Highpass'

Specification: 'N,Fst,Ast'

Description: {3x1 cell}

NormalizedFrequency: false

Fs: 50

FilterOrder: 5

Fstop: 20

Astop: 55

hd=design(d,'cheby2')

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'double'

sosMatrix: [3x6 double]

ScaleValues: [4x1 double]

PersistentMemory: false

The Filter Visualization Tool shows the highpass filter meets the
specifications.

fvtool(hd)

2-223

cheby2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

By design, cheby2 returns filters that use second-order sections. For
many applications, and for most fixed-point applications, SOS filters
are particularly well-suited for use.

See Also butter, cheby1, ellip

2-224

cl2tf

Purpose Convert coupled allpass lattice to transfer function form

Syntax [b,a] = cl2tf(k1,k2)
[b,a] = cl2tf(k1,k2,beta)
[b,a,bp] = cl2tf(k1,k2)
[b,a,bp] = cl2tf(k1,k2,beta)

Description [b,a] = cl2tf(k1,k2) returns the numerator and denominator
vectors of coefficients b and a corresponding to the transfer function

where H1(z) and H2(z) are the transfer functions of the allpass filters
determined by k1 and k2, and k1 and k2 are real vectors of reflection
coefficients corresponding to allpass lattice structures.

[b,a] = cl2tf(k1,k2,beta) where k1, k2 and beta are complex,
returns the numerator and denominator vectors of coefficients b and a
corresponding to the transfer function

[b,a,bp] = cl2tf(k1,k2) where k1 and k2 are real, returns the vector
bp of real coefficients corresponding to the numerator of the power
complementary filter G(z)

[b,a,bp] = cl2tf(k1,k2,beta) where k1, k2 and beta are complex,
returns the vector of coefficients bp of possibly complex coefficients
corresponding to the numerator of the power complementary filter G(z)

2-225

cl2tf

Examples [b,a]=cheby1(10,.5,.4);
%TF2CL returns the reflection coeffs

[k1,k2,beta]=tf2cl(b,a);
% Reconstruct the original filter
% plus the power complementary one.
[num,den,numpc]=cl2tf(k1,k2,beta);
[h,w,s1]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
% Plot the mag response of the original
% filter and the power
% complementary one.
freqzplot([h hpc],w,s1);

See Also tf2cl, tf2ca, ca2tf, tf2latc, latc2tf, iirpowcomp

2-226

coeffs

Purpose Coefficients for filters

Syntax s = coeffs(ha)
s = coeffs(hd)
s = coeffs(hm)

Description The next sections describe common coeffs operation with adaptive,
discrete-time, and multirate filters.

Adaptive Filters

s = coeffs(ha) returns a structure s containing the coefficients of
adaptive filter ha. These are the instantaneous filter coefficients
available at the time you use the function.

Discrete-Time Filters

s = coeffs(hd) returns a structure s that contains the coefficients
of discrete-time filter hd.

Multirate Filters

s = coeffs(hm) returns s, a structure containing the coefficients of
discrete-time filter hm. CIC-based filters do not have coefficients and
this function does not work with constructors like mfilt.cicdecim.

Examples coefficients works the same way for all filters. This example uses a
multirate filter hm to demonstrate the function.

hm=mfilt.firdecim(3)

hm =

FilterStructure: 'Direct-Form FIR Polyphase Decimator'

Numerator: [1x72 double]

DecimationFactor: 3

PersistentMemory: false

States: [69x1 double]

s=coeffs(hm)

2-227

coeffs

s =

[1x72 double]

s.Numerator

ans =

Columns 1 through 8

0 -0.0000 -0.0001 0 0.0002 0.0003 0 -0.0005

Columns 9 through 16

-0.0007 0 0.0011 0.0014 0 -0.0022 -0.0028 0

Columns 17 through 24

0.0040 0.0048 0 -0.0068 -0.0080 0 0.0111 0.0129

Columns 25 through 32

0 -0.0177 -0.0207 0 0.0287 0.0342 0 -0.0513

Columns 33 through 40

-0.0659 0 0.1363 0.2749 0.3333 0.2749 0.1363 0

Columns 41 through 48

-0.0659 -0.0513 0 0.0342 0.0287 0 -0.0207 -0.0177

Columns 49 through 56

0 0.0129 0.0111 0 -0.0080 -0.0068 0 0.0048

2-228

coeffs

Columns 57 through 64

0.0040 0 -0.0028 -0.0022 0 0.0014 0.0011 0

Columns 65 through 72

-0.0007 -0.0005 0 0.0003 0.0002 0 -0.0001 -0.0000

See Also adaptfilt, freqz, grpdelay, impz, info, phasez, stepz, zerophase,
zplane

2-229

coeread

Purpose Read Xilinx COE file

Syntax hd = coeread(filename)

Description hd = coeread(filename) extracts the Distributed Arithmetic FIR
filter coefficients defined in the XILINX CORE Generator .COE file
specified by filename. It returns a dfilt object, the fixed-point filter
hd. If you do not provide the file type extension .coe with the filename,
the function assumes the .coe extension.

See Also coewrite, dfilt, dfilt.dffir

2-230

coewrite

Purpose Write Xilinx COE file

Syntax coewrite(hd)
coewrite(hd,radix)
coewrite(...,filename)

Description coewrite(hd) writes a XILINX Distributed Arithmetic FIR filter
coefficient .COE file which can be loaded into the XILINX CORE
Generator. The coefficients are extracted from the fixed-point dfilt
object hd. Your fixed-point filter must be a direct form FIR structure
dfilt object with one section and whose Arithmetic property is set
to fixed. You cannot export single-precision, double-precision, or
floating-point filters as .coe files, nor multiple-section filters. To enable
you to provide a name for the file, coewrite displays a dialog box where
you fill in the file name. If you do not specify the name of the output
file, the default file name is untitled.coe.

coewrite(hd,radix) indicates the radix (number base) used to specify
the FIR filter coefficients. Valid radix values are 2 for binary, 10 for
decimal, and 16 for hexadecimal (default).

coewrite(...,filename) writes a XILINX.COE file to filename. If
you omit the file extension, coewrite adds the .coe extension to the
name of the file.

Examples coewrite generates an ASCII text file that contains the filter
coefficients in a format the XILINX CORE Generator can read and load.
In this example, you create a 30th-order fixed-point filter and generate
the .coe file that include the filter coefficients as well as associated
information about the filter.

b = firceqrip(30,0.4,[0.05 0.03]);
hq = dfilt.dffir(b);
set(hq,'arithmetic','fixed');
coewrite(hq,10,'mycoefile');

When you look at mycoefile.coe, you see the following:

2-231

coewrite

;
; XILINX CORE Generator(tm) Distributed Arithmetic
; FIR filter coefficient (.COE) File
; Generated by MATLAB(tm) and Filter Design Toolbox.
;
; Generated on: 4-Dec-2003 13:47:15
;
Radix = 10;
Coefficient_Width = 16;
CoefData = -41,
-851,
-366,
308,
651,
22,

-873,
-658,
749,

1504,
21,

-2367,
-2012,
3014,
9900,

....

coewrite puts the filter coefficients in column-major order and reports
the radix, the coefficient width, and the coefficients. These represent
the minimum set of data needed in a .coe file.

See Also coeread, dfilt, dfilt.dffir

2-232

convert

Purpose Convert filter structure of discrete-time or multirate filter

Syntax hq = convert(hq,newstruct)
hm = convert(hm,newstruct)

Description Discrete-Time Filters

hq = convert(hq,newstruct) returns a quantized filter whose
structure has been transformed to the filter structure specified by
string newstruct. You can enter any one of the following quantized
filter structures:

• 'antisymmetricfir': Antisymmetric finite impulse response (FIR).

• 'df1': Direct form I.

• 'df1t': Direct form I transposed.

• 'df2': Direct form II.

• 'df2t': Direct form II transposed. Default filter structure.

• 'dffir': FIR.

• 'dffirt': Direct form FIR transposed.

• 'latcallpass': Lattice allpass.

• 'latticeca': Lattice coupled-allpass.

• 'latticecapc': Lattice coupled-allpass power-complementary.

• 'latticear': Lattice autoregressive (AR).

• 'latticema': Lattice moving average (MA) minimum phase.

• 'latcmax': Lattice moving average (MA) maximum phase.

• 'latticearma': Lattice ARMA.

• 'statespace': Single-input/single-output state-space.

• 'symmetricfir': Symmetric FIR. Even and odd forms.

All filters can be converted to the following structures:

2-233

convert

• df1

• df1t

• df2

• df2t

• statespace

• latticearma

For the following filter classes, you can specify other conversions as well:

• Minimum phase FIR filters can be converted to latticema

• Maximum phase FIR filters can be converted to latcmax

• Allpass filters can be converted to latcallpass

convert generates an error when you specify a conversion that is not
possible.

Multirate Filters

hm = convert(hm,newstruct) returns a multirate filter whose
structure has been transformed to the filter structure specified by string
newstruct. You can enter any one of the following multirate filter
structures, defined by the strings shown, for newstruct:

Cascaded Integrator-Comb Structure

• cicdecim — CIC-based decimator

• cicdecimzerolat — CIC-based decimator that exhibits no latency

• cicinterp — CIC-based interpolator

• cicinterpzerolat — CIC-based interpolater that does not induce
latency

FIR Structures

2-234

convert

• firdecim — FIR decimator

• firtdecim — transposed FIR decimator

• firfracdecim — FIR fractional decimator

• firinterp — FIR interpolator

• firfracinterp — FIR fractional interpolator

• firsrc — FIR sample rate change filter

• firholdinterp — FIR interpolator that uses hold interpolation
between input samples

• firlinearinterp — FIR interpolator that uses linear interpolation
between input samples

• fftfirinterp — FFT-based FIR interpolator

You cannot convert between the FIR and CIC structures.

Examples [b,a]=ellip(5,3,40,.7);

hq = dfilt.df2t(b,a);

hq2 = convert(hq,'df1')

hq2 =

FilterStructure: 'Direct-Form I'

Arithmetic: 'double'

Numerator: [0.1980 0.7886 1.4236 1.4236 0.7886 0.1980]

Denominator: [1 1.4339 1.8021 0.6139 0.2047 -0.2342]

PersistentMemory: false

States: Numerator: [5x1 double]

Denominator:[5x1 double]

For an example of changing the structure of a multirate filter, try the
following conversion from a CIC interpolator to a CIC interpolator with
zero latency.

hm = mfilt.cicinterp(2,2,3,8,8)

hm =

2-235

convert

FilterStructure: 'Cascaded Integrator-Comb Interpolator'

Arithmetic: 'int'

DifferentialDelay: 2

NumberOfSections: 3

InterpolationFactor: 2

RoundMode: 'floor'

PersistentMemory: false

States: Integrator: [3x1 States]

Comb: [3x1 States]

InputWordLength: 8

SectionWordLengthMode: 'MinWordLengths'

OutputWordLength: 8

hm2=convert(hm,'cicinterpzerolat')

hm2 =

FilterStructure: 'Zero-Latency Cascaded Integrator-Comb Interpolator'

Arithmetic: 'int'

DifferentialDelay: 2

NumberOfSections: 3

InterpolationFactor: 2

RoundMode: 'floor'

PersistentMemory: false

States: Integrator: [3x1 States]

Comb: [3x1 States]

InputWordLength: 8

SectionWordLengthMode: 'MinWordLengths'

OutputWordLength: 8

2-236

convert

See Also mfilt

dfilt in Signal Processing Toolbox documentation

2-237

cost

Purpose Cost of using discrete-time or multirate filter

Syntax c = cost(hd)
c = cost(hm)

Description c = cost(hd) and c = cost(hm) return a cost estimate c for the filter
hd or hm. The returned cost estimate contains the following fields.

Estimated Value Property Description

Number of
Multiplications

nmult Number of
multiplications
during the filter
run. nmult ignores
multiplications by -1,
0, and 1 in the total
multiple.

Number of
Additions

nadd Number of additions
during the filter run.

Number of States nstates Number of states the
filter uses.

MultPerInputSample multperinputsample Number of
multiplication
operations performed
for each input sample

AddPerInputSample addperinputsample Number of addition
operations performed
for each input sample

Examples These examples show you the cost method applied to dfilt and mfilt
objects.

hd = design(fdesign.lowpass);
c = cost(hd)
c =

2-238

cost

Number of Multipliers : 43
Number of Adders : 42
Number of States : 42
MultPerInputSample : 43
AddPerInputSample : 42
hd

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x43 double]

PersistentMemory: false

When you are using a multirate filter object, cost works the same way.

d = fdesign.decimator(4,'cic');
hm = design(d,'multisection')

hm =

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'

DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision'

c=cost(hm)

c =

2-239

cost

Number of Multipliers : 0
Number of Adders : 4
Number of States : 4
MultPerInputSample : 0
AddPerInputSample : 2.5

See Also qreport

2-240

cumsec

Purpose Vector of SOS filters for cumulative sections

Syntax h = cumsec(hd)
h = cumsec(hd,indices)
h = cumsec(hd,indices,secondary)
cumsec(hd,...)

Description h = cumsec(hd) returns a vector h of SOS filter objects with the
cumulative sections. Each element in h is a filter with the structure of
the original filter. The first element is the first filter section of hd. The
second element of h is a filter that represents the combination of the
first and second sections of hd. The third element of h is a filter which
combines sections 1, 2, and 3 of hd. this pattern continues until the final
element of h contains all the sections of hd and should be identical to hd.

h = cumsec(hd,indices) returns a vector h of SOS filter objects whose
indices into the original filter are in the vector indices. Now you
can specify the filter sections cumsec uses to compute the cumulative
responses.

h = cumsec(hd,indices,secondary) when secondary is true, cumsec
uses the secondary scaling points in the sections to determine where
the sections should be split. This option applies only when hd is a
df2sos and df1tsos filter. For these second-order section structures,
the secondary scaling points refer to the scaling locations between the
recursive and the nonrecursive parts of the section (the "middle" of
the section). Argument secondary accepts either true or false. By
default, secondary is false.

cumsec(hd,...) without an output arguments uses FVTool to plot the
magnitude response of the cumulative sections.

Examples To demonstrate how cumsec works, this example plots the relative
responses of the sections of a sixth-order filter SOS filter with three
sections. Each curve adds one more section to form the filter response.

hs = fdesign.lowpass('n,fc',6,.4);
hd = butter(hs);

2-241

cumsec

h = cumsec(hd);
hfvt = fvtool(h);
legend(hfvt,'First Section','First Two Sections','Overall
Filter');

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

See Also scale, scalecheck

2-242

denormalize

Purpose Undo filter coefficient and gain changes caused by normalize

Syntax denormalize(hq)

Description denormalize(hq) reverses the coefficient changes you make when you
use normalize with hq. The filter coefficients do not change if you call
denormalize(hq) before you use normalize(hq). Calling denormalize
more than once on a filter does not change the coefficients after the
first denormalize call.

Examples Make a quantized filter hq and normalize the filter coefficients. After
normalizing the coefficients, restore them to their original values by
reversing the effects of the normalize function.

d=fdesign.highpass('n,fc',14,0.45)

d =

Response: 'Highpass'

Specification: 'N,Fc'

Description: {'Filter Order';'Cutoff Frequency'}

NormalizedFrequency: true

FilterOrder: 14

Fcutoff: 0.45

hd = butter(d)

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'double'

sosMatrix: [7x6 double]

ScaleValues: [8x1 double]

PersistentMemory: false

hd.arithmetic='fixed'

2-243

denormalize

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'fixed'

sosMatrix: [7x6 double]

ScaleValues: [8x1 double]

PersistentMemory: false

CoeffWordLength: 16

CoeffAutoScale: true

Signed: true

InputWordLength: 16

InputFracLength: 15

StageInputWordLength: 16

StageInputAutoScale: true

StageOutputWordLength: 16

StageOutputAutoScale: true

OutputWordLength: 16

OutputMode: 'AvoidOverflow'

StateWordLength: 16

StateFracLength: 15

ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'

AccumWordLength: 40

CastBeforeSum: true

RoundMode: 'convergent'

OverflowMode: 'wrap'

hq=hd;

g=normalize(hq)'

2-244

denormalize

g =

2 2 2 2 2 2 2

hq.SosMatrix

ans =

0.5000 -1.0000 0.5000 1.0000 -0.2817 0.8008

0.5000 -1.0000 0.5000 1.0000 -0.2359 0.5081

0.5000 -1.0000 0.5000 1.0000 -0.2051 0.3110

0.5000 -1.0000 0.5000 1.0000 -0.1842 0.1776

0.5000 -1.0000 0.5000 1.0000 -0.1704 0.0892

0.5000 -1.0000 0.5000 1.0000 -0.1619 0.0350

0.5000 -1.0000 0.5000 1.0000 -0.1579 0.0093

denormalize(hq)

hq.SosMatrix

ans =

1.0000 -2.0000 1.0000 1.0000 -0.2817 0.8008

1.0000 -2.0000 1.0000 1.0000 -0.2359 0.5081

1.0000 -2.0000 1.0000 1.0000 -0.2051 0.3110

1.0000 -2.0000 1.0000 1.0000 -0.1842 0.1776

1.0000 -2.0000 1.0000 1.0000 -0.1704 0.0892

1.0000 -2.0000 1.0000 1.0000 -0.1619 0.0350

1.0000 -2.0000 1.0000 1.0000 -0.1579 0.0093

See Also normalize

2-245

design

Purpose Apply design method to specification object

Syntax h = design(d)
h = design(d,designmethod)
h = design(d,designmethod,specname,specvalue,...)

Description h = design(d) uses specifications object d to generate a filter h. When
you do not provide a design method as an input argument, design
chooses the design method to use by following these rules in the order
listed.

1 Use equiripple if it applies to the object d.

2 When equiripple does not apply to d, use another FIR design
method, such as firls.

3 If FIR design methods do not apply to d, use ellip.

4 When ellip does not apply to d, use another IIR design method, such
as butter or cheby2, that applies to the object d.

More rules apply.

• design uses an FIR filter design method before using an IIR design
method.

• fdesign.nyquist specifications objects use the kaiserwin design
method as the first design choice, rather than equiripple, because
kaiserwin produces better filters than equiripple.

• For decimators, interpolators, and rational sample rate changers
that use fdesign.nyquist objects, the default design method is
kaiserwin. Otherwise, those objects use the equiripple design
method by default.

For more guidance about using design to design filters, refer to Getting
Started with Filter Design Toolbox . There you find examples that use
design to design filters and use methods in the toolbox to analyze them.

2-246

design

Alternatively, you can type the following at the MATLAB command
prompt to obtain more information:

help design

h = design(d,designmethod) lets you specify a valid design method
to design the filter as an input string. Note that the filter returned by
design changes depending on the design method you choose. For more
information about the filter that a design method returns, refer to the
help for the design method.

The design method you provide as the designmethod input argument
must be one of the methods returned by

designmethods(d)

for the specifications object d.

Valid entries depend on d. This is the complete set of design methods.
The methods that apply to a specific specifications object usually
represent a subset of this list.

• butter

• cheby1

• cheby2

• ciccomp

• ellip

• equiripple

• firls

• ifir

• iirhilbert

• iirlinphase

• isinclp

2-247

design

• kaiserwin

• lagrange

• multistage

• window

To help you design filters more quickly, the input argument
designmethod accepts a variety of special keywords that force design to
behave in different ways. The following table presents the keywords you
can use for designmethod and how design responds to the keyword.

Designmethod
Keyword Description of the design Response

fir Forces design to produce an FIR filter. When no
FIR design method exists for object d, design
returns an error.

iir Forces design to produce an IIR filter. When
no IIR design method exists for object d, design
returns an error.

allfir Produces filters from every applicable FIR design
method for the specifications in d, one filter for
each design method. As a result, design returns
multiple filters in the output object.

alliir Produces filters from every applicable IIR design
method for the specifications in d, one filter for
each design method. As a result, design returns
multiple filters in the output object.

all Designs filters using all applicable design methods
for the specifications object d. As a result, design
returns multiple filters, one for each design
method. design uses the design methods in the
order that designmethods(d) returns them. Refer
to Examples to see this in use.

2-248

design

Keywords are not case sensitive and must be enclosed in single
quotation marks like any string input.

When design returns multiple filters in the output object, use indexing
to see the individual filters. For example, to see the third filter in h,
enter

h(3)

at the MATLAB prompt.

h = design(d,designmethod,specname,specvalue,...) with this
syntax you can specify not only the design method but also values for
the filter specifications in the method. Provide the specifications in
the order of the name of the specification, such as the FilterOrder,
followed by the value to assign to the specification. Enter as many
specname/specvalue pairs as you need to define your filter. Any
specification you do not define uses the default specification value.
To use the specname/specvalue syntax, you must provide the design
method to use in designmethod.

Examples To demonstrate some of the design options, these examples use a few
different input arguments and output arguments. For the first example,
use design to return the default filter based on the default design
method equiripple.

d = fdesign.lowpass(.2,.22);
hd = design(d) % Uses the default equiripple method.

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x202 double]

PersistentMemory: false

In this example, use the allfir keyword with design to return an FIR
filter for each valid design method for the specifications in specifications
object d.

2-249

design

designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

hallfir=design(d,'allfir')

hallfir =

dfilt.basefilter: 1-by-4

hallfir contains filters designed using the ellip, equiripple,
ifir, and multistage design methods, in the order shown by
designmethods(d). The first filter in hallfir comes from the ellip
design method; the second from the equiripple method; the third from
using ifir to design the filter; and the fourth from using multistage.

To see an individual filter, use an index with the filter object. For
example, to see the second filter in hallfir, enter hallfir(2)

hallfir(2)

ans =

FilterStructure: Cascade
Stage(1): Direct-Form FIR
Stage(2): Direct-Form FIR

PersistentMemory: false

2-250

design

Here is the multistage filter hallfir(4)

hallfir(4)

ans =

FilterStructure: Cascade
Stage(1): Direct-Form FIR Polyphase Decimator
Stage(2): Direct-Form FIR Polyphase Decimator
Stage(3): Direct-Form FIR Polyphase Decimator
Stage(4): Direct-Form FIR Polyphase Interpolator
Stage(5): Direct-Form FIR Polyphase Interpolator
Stage(6): Direct-Form FIR Polyphase Interpolator

PersistentMemory: false

This final example uses equiripple to design an FIR filter with the
density factor set to 20 by using the specname/specvalue syntax.

[hd,res,err] = design(d,'equiripple','densityfactor',20);
hd

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x202 double]

PersistentMemory: false
res

res =

0.9903

err

err =

order: 201

2-251

design

fgrid: [2060x1 double]
H: [2060x1 double]

error: [2060x1 double]
des: [2060x1 double]
wt: [2060x1 double]

iextr: [102x1 double]
fextr: [102x1 double]

iterations: 12
evals: 12905

edgeCheck: [4x1 double]
returnCode: 0

res and err are optional output arguments that design returns when
you specify the density factor with the equiripple design method.

See Also designmethods, butter, cheby1, cheby2, ellip, equiripple, firls,
fdesign.halfband, kaiserwin, fdesign.nyquist, fdesign.rsrc

2-252

designmethods

Purpose Methods available for designing filter from specification object

Syntax m = designmethods(d)
m = designmethods(d,'default')
m = designmethods(d,type)
m = designmethods(d,'full')

Description m = designmethods(d) returns a list of the design methods available
for the filter specification object d with its Specification. When you
change the Specification for a filter specification object, the methods
available to design filters from the object change.

Here are all the design methods and the filters they produce.

Design Method Filter Result

butter IIR

cheby1 IIR

cheby2 IIR

ellip IIR

equiripple FIR

firls FIR

ifir Interpolated FIR

iirlinphase IIR filter with linear phase

iirlpnorm IIR filter from an arbitrary magnitude
specifications object. Compare to iirls.

iirls IIR filter from an arbitrary magnitude and phase
specifications object. Compare to iirlpnorm.

kaiserwin FIR with Kaiser window

lagrange Multirate filter with fractional delay

2-253

designmethods

Design Method Filter Result

multistage Multistage filter that cascades multiple filters

window FIR with windowed impulse response

m = designmethods(d,'default') returns the default design method
for the filter specification object d and its current Specification.

m = designmethods(d,type) returns either the FIR or IIR design
methods that apply to d, as specified by the type string, either fir or
iir. By default, designmethods returns all the valid design methods
when you omit the type string.

m = designmethods(d,'full') returns the full name for each of the
available design methods. For example, designmethods with the full
argument returns Butterworth for the butter method.

Examples Construct a lowpass filter specification object and determine the design
methods available to design a filter from the object.

d=fdesign.lowpass('n,fc',10,12000,48000)

d =

Response: 'Lowpass'
Specification: 'N,Fc'

Description: {'Filter Order';'Cutoff Frequency'}
NormalizedFrequency: false

Fs: 48000
FilterOrder: 10

Fcutoff: 12000

designmethods(d)

Design Methods for class fdesign.lowpass (N,Fc):

2-254

designmethods

window

hd=window(d)

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x11 double]

PersistentMemory: false

Now change the Specification string for d to 'fp,fst,ap,ast' and
determine the design methods that apply to your modified specifications
object.

set(d,'specification','fp,fst,ap,ast');
d

d =

Response: 'Lowpass'
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: false

Fs: 48000
Fpass: 10800
Fstop: 13200
Apass: 1
Astop: 60

m2 = designmethods(d)
m3 = designmethods(d, 'iir')
m4 = designmethods(d, 'iir', 'full')

m2 =

'butter'

2-255

designmethods

'cheby1'
'cheby2'
'ellip'
'equiripple'
'ifir'
'kaiserwin'
'multistage'

m3 =

'butter'
'cheby1'
'cheby2'
'ellip'

m4 =

'Butterworth'
'Chebyshev Type I'
'Chebyshev Type II'
'Elliptic'

Now you can get specific help on a particular design method for the
specifications object. This example returns the help for the first design
method for the m2 set of methods — butter.

help(d,m2{1})

This is the same as help(d,'butter').

See Also butter, cheby1, cheby2, designopts, ellip, equiripple, kaiserwin,
multistage

2-256

designopts

Purpose Valid input arguments and values for specification object and method

Syntax options = designopts(d,'designmethod')

Description options = designopts(d,'designmethod') returns the structure
options with the default design parameters used by the design method
designmethod, specific to the response you defined for d. Replace
designmethod with one of the strings returned by designmethods.

Use help(d,designmethod) to get a description of the design
parameters. For example, to see the help for designing a highpass
Chebyshev II filter from a specifications object d, enter

help(d,'cheby2')

at the prompt. MATLAB responds with help for Chebyshev II filter
designs that use the specification Fst,Fp,Ast,Ap.

DESIGN Design a Chebyshev Type II iir filter.
HD = DESIGN(D, 'cheby2') designs a Chebyshev Type II
filter specified by the FDESIGN object H.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a
filter with the structure STRUCTURE. STRUCTURE is
'df2sos' by default and can be any of the following.

'df1sos'
'df2sos'
'df1tsos'
'df2tsos'

HD = DESIGN(..., 'MatchExactly', MATCH) designs a
Chebyshev Type II filter and matches the frequency and
magnitude specification for the band MATCH exactly.
The other band will exceed the specification.
MATCH can be 'stopband' or 'passband' and is 'passband'
by default.

2-257

designopts

Examples Design a minimum order, lowpass Butterworth filter. Use
designmethods to determine the appropriate input arguments. Start by
creating a lowpass filter specification object d.

d = fdesign.lowpass;

Because you want information about the input arguments for designing
a filter using a design method, use designmethods(d) to get the list of
valid methods.

designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

Pick one method and determine the design options for that method.

options = designopts(d,'butter')

options =

FilterStructure: 'df2sos'
MatchExactly: 'stopband'

In this example, the filter structure is Direct-Form II with second-order
sections, and the design seeks to match the desired stopband
performance exactly. As you see by reading the help, FilterStructure
and MatchExactly are input arguments for designing the Butterworth
filter.

2-258

designopts

Get help for designing a filter from d using the butter design method to
see the arguments.

help(d,'butter')

DESIGN Design a Butterworth IIR filter.

HD = DESIGN(D, 'butter') designs a Butterworth filter specified by the

FDESIGN object H.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter with the

structure STRUCTURE. STRUCTURE is 'df2sos' by default and can be any of

the following.

'df1sos'

'df2sos'

'df1tsos'

'df2tsos'

HD = DESIGN(..., 'MatchExactly', MATCH) designs a Butterworth filter

and matches the frequency and magnitude specification for the band

MATCH exactly. The other band will exceed the specification. MATCH

can be 'stopband' or 'passband' and is 'stopband' by default.

See Also design, designmethods, fdesign

2-259

dfilt

Purpose Discrete-time filter

Syntax hd = dfilt.structure(input1,...)
hd = [dfilt.structure(input1,...), dfilt.structure(input1,

...),...]
hd = design(d,'designmethod')

Description hd = dfilt.structure(input1,...) returns a discrete-time filter, hd,
of type structure. Each structure takes one or more inputs. When you
specify a dfilt.structure with no inputs, a default filter is created.

Note You must use a structure with dfilt.

hd = [dfilt.structure(input1,...),
dfilt.structure(input1,...),...] returns a vector containing
dfilt filters.

Structures

Structures for dfilt.structure specify the type of filter structure.
Available types of structures for dfilt are shown below.

dfilt.structure Description

dfilt.allpass Allpass filter

dfilt.cascadeallpass Cascade of allpass filter sections

dfilt.cascadewdfallpass Cascade of allpass wave digital filters

dfilt.delay Delay

dfilt.df1 Direct-form I

dfilt.df1sos Direct-form I, second-order sections

dfilt.df1t Direct-form I transposed

dfilt.df1tsos Direct-form I transposed, second-order sections

2-260

dfilt

dfilt.structure Description

dfilt.df2 Direct-form II

dfilt.df2sos Direct-form II, second-order sections

dfilt.df2t Direct-form II transposed

dfilt.df2tsos Direct-form II transposed, second-order sections

dfilt.dffir Direct-form FIR

dfilt.dffirt Direct-form FIR transposed

dfilt.dfsymfir Direct-form symmetric FIR

dfilt.dfasymfir Direct-form antisymmetric FIR

dfilt.farrowfd Generic fractional delay Farrow filter

dfilt.farrowlinearfd Linear fractional delay Farrow filter

dfilt.fftfir Overlap-add FIR

dfilt.latticeallpass Lattice allpass

dfilt.latticear Lattice autoregressive (AR)

dfilt.latticearma Lattice autoregressive moving- average (ARMA)

dfilt.latticemamax Lattice moving-average (MA) for maximum phase

dfilt.latticemamin Lattice moving-average (MA) for minimum phase

dfilt.calattice Coupled, allpass lattice

dfilt.calatticepc Coupled, allpass lattice with power complementary
output

dfilt.statespace State-space

2-261

dfilt

dfilt.structure Description

dfilt.scalar Scalar gain object

dfilt.wdfallpass Allpass wave digital filter object

dfilt.cascade Filters arranged in series

dfilt.parallel Filters arranged in parallel

For more information on each structure, refer to its reference page.

hd = design(d,'designmethod') returns the dfilt object hd resulting
from the filter specification object d and the design method you specify
in designmethod. When you omit the designmethod argument, design
uses the default design method to construct a filter from the object d.

With this syntax, you design filters by

1 Specifying the filter specifications, such as the response shape
(perhaps highpass) and details (passband edges and attenuation).

2 Selecting a method (such as equiripple) to design the filter.

3 Applying the method to the specifications object with
design(d,'designmethod).

Using the specification-based technique can be more effective than the
coefficient-based filter design techniques.

Design Methods for design Syntax

When you use the hd = design(d,'designmethod') syntax, you
have a range of design methods available depending on d, the filter
specification object. The table below lists all of the design methods
in the toolbox.

2-262

dfilt

Design Method
String Filter Design Result

butter Butterworth IIR

cheby1 Chebyshev Type I IIR

cheby2 Chebyshev Type II IIR

ellip Elliptic IIR

equiripple Equiripple with the same ripple in the pass
and stopbands

firls Least-squares FIR

freqsamp Frequency-Sampled FIR

ifir Interpolated FIR

iirlpnorm Least Pth norm IIR

iirls Least-Squares IIR

kaiserwin Kaiser-windowed FIR

lagrange Fractional delay filter

multistage Multistage FIR

window Windowed FIR

As specifications object d changes, the methods that apply for designing
filters from d change. For instance, if d is a lowpass filter, these are the
applicable methods:

% Create an object to design a lowpass filter.
d=fdesign.lowpass

d =

Response: 'Lowpass'
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

2-263

dfilt

Fpass: 0.45
Fstop: 0.55
Apass: 1
Astop: 60

designmethods(d) % What design methods apply to object d?

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

When d is a bandstop filter, the design methods change.

% Create default bandstop specifications
d=fdesign.bandstop
object.

d =

Response: 'Bandstop'
Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'

Description: {7x1 cell}
NormalizedFrequency: true

Fpass1: 0.35
Fstop1: 0.45
Fstop2: 0.55
Fpass2: 0.65
Apass1: 1
Astop: 60

Apass2: 1

2-264

dfilt

designmethods(d) % Show design methods that apply to d.

Design Methods for class fdesign.bandstop
(Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

Notice that ifir and multistage design methods do not apply to this
bandstop specifications object d.

Analysis Methods

Methods provide ways of performing functions directly on your dfilt
object without having to specify the filter parameters again. You can
apply these methods directly on the variable you assigned to your dfilt
object.

For example, if you create a dfilt object, hd, you can check whether
it has linear phase with islinphase(hd), view its frequency response
plot with fvtool(hd), or obtain its frequency response values with
h = freqz(hd). You can use all of the methods described here in this
way.

Note If your variable hd is a 1-D array of dfilt filters, the method is
applied to each object in the array. Only freqz, grpdelay, impz, is*,
order, and stepz methods can be applied to arrays. The zplane method
can be applied to an array only if zplane is used without outputs.

Some of the methods listed here have the same name as functions in
Signal Processing or Filter Design Toolbox. They behave similarly.

2-265

dfilt

Method Description

addstage Adds a stage to a cascade or parallel object,
where a stage is a separate, modular filter.
Refer to dfilt.cascade and dfilt.parallel.

block (Available only with Signal Processing
Blockset)

block(hd) creates a Signal Processing
Blockset block of the dfilt object. The block
method can specify these properties/values:

'Destination' indicates where to place the
block. 'Current' places the block in the
current Simulink model. 'New' creates a new
model. Default value is 'Current'.

'Blockname' assigns the entered string to the
block name. Default name is 'Filter'.

'OverwriteBlock'indicates whether to
overwrite the block generated by the block
method ('on') and defined by Blockame.
Default is 'off'.

'MapStates’ specifies initial conditions in the
block ('on'). Default is 'off'. Refer to "Using
Filter States" in Signal Processing Toolbox
documentation.

cascade Returns the series combination of two dfilt
objects. Refer to dfilt.cascade.

coeffs Returns the filter coefficients in a structure
containing fields that use the same property
names as those in the original dfilt.

convert Converts a dfilt object from one filter
structure, to another filter structure

2-266

dfilt

Method Description

fcfwrite Writes a filter coefficient ASCII file. The
file can contain a single filter or a vector of
objects. If Filter Design Toolbox is installed,
the file can contain multirate filters (mfilt) or
adaptive filters (adaptfilt). Default filename
is untitled.fcf.

fcfwrite(hd,filename) writes to a disk
file named filename in the current working
directory. The .fcf extension is added
automatically.

fcfwrite(...,fmt) writes the coefficients in
the format fmt, where valid fmt strings are:

'hex' for hexadecimal

'dec' for decimal

'bin' for binary representation.

fftcoeffs Returns the frequency-domain coefficients
used when filtering with a dfilt.fftfir

filter Performs filtering using the dfilt object

firtype Returns the type (1-4) of a linear phase FIR
filter

freqz Plots the frequency response in fvtool. Note
that unlike the freqz function, this dfilt
freqz method has a default length of 8192.

grpdelay Plots the group delay in fvtool

impz Plots the impulse response in fvtool

impzlength Returns the length of the impulse response

info Displays dfilt information, such as filter
structure, length, stability, linear phase, and,
when appropriate, lattice and ladder length.

2-267

dfilt

Method Description

isallpass Returns a logical 1 (i.e., true) if the dfilt
object in an allpass filter or a logical 0 (i.e.,
false) if it is not

iscascade Returns a logical 1 if the dfilt object is
cascaded or a logical 0 if it is not

isfir Returns a logical 1 if the dfilt object has
finite impulse response (FIR) or a logical 0 if
it does not

islinphase Returns a logical 1 if the dfilt object is linear
phase or a logical 0 if it is not

ismaxphase Returns a logical 1 if the dfilt object is
maximum-phase or a logical 0 if it is not

isminphase Returns a logical 1 if the dfilt object is
minimum-phase or a logical 0 if it is not

isparallel Returns a logical 1 if the dfilt object has
parallel stages or a logical 0 if it does not

isreal Returns a logical 1 if the dfilt object has
real-valued coefficients or a logical 0 if it does
not

isscalar Returns a logical 1 if the dfilt object is a
scalar or a logical 0 if it is not scalar

issos Returns a logical 1 if the dfilt object has
second-order sections or a logical 0 if it does
not

isstable Returns a logical 1 if the dfilt object is stable
or a logical 0 if it are not

2-268

dfilt

Method Description

nsections Returns the number of sections in a
second-order sections filter. If a multistage
filter contains stages with multiple sections,
using nsections returns the total number of
sections in all the stages (a stage with a single
section returns 1).

nstages Returns the number of stages of the filter,
where a stage is a separate, modular filter

nstates Returns the number of states for an object

order Returns the filter order. If hd is a single-stage
filter, the order is given by the number of
delays needed for a minimum realization of
the filter. If hd has multiple stages, the order
is given by the number of delays needed for a
minimum realization of the overall filter.

parallel Returns the parallel combination of two dfilt
filters. Refer to dfilt.parallel.

phasez Plots the phase response in fvtool

2-269

dfilt

Method Description

realizemdl (Available only with Simulink)

realizemdl(hd) creates a Simulink model
containing a subsystem block realization of
your dfilt.

realizemdl(hd,p1,v1,p2,v2,...) creates
the block using the properties p1, p2,... and
values v1, v2,... specified.

The following properties are available:

'Blockname' specifies the name of the block.
The default value is 'Filter'.

'Destination' specifies whether to add the
block to a current Simulink model or create a
new model. Valid values are 'Current' and
'New'.

'OverwriteBlock' specifies whether to
overwrite an existing block that was created
by realizemdl or create a new block. Valid
values are 'on' and 'off'. Note that only
blocks created by realizemdl are overwritten.

The following properties optimize the
block structure. Specifying 'on' turns the
optimization on and 'off' creates the block
without optimization. The default for each
block is 'off'.

'OptimizeZeros' removes zero-gain blocks.

'OptimizeOnes' replaces unity-gain blocks
with a direct connection.

'OptimizeNegOnes' replaces negative
unity-gain blocks with a sign change at the
nearest summation block.

'OptimizeDelayChains' replaces cascaded
chains of delay block with a single integer
delay block set to the appropriate delay.

2-270

dfilt

Method Description

removestage Removes a stage from a cascade or parallel
dfilt. Refer to dfilt.cascade and
dfilt.parallel.

setstage Overwrites a stage of a cascade or parallel
dfilt. Refer to dfilt.cascade and
dfilt.parallel.

sos Converts the dfilt to a second-order sections
dfilt. If hd has a single section, the returned
filter has the same class.

sos(hd,flag) specifies the ordering of the
second-order sections. If flag='UP', the first
row contains the poles closest to the origin,
and the last row contains the poles closest to
the unit circle. If flag='down', the sections
are ordered in the opposite direction. The
zeros are always paired with the poles closest
to them.

sos(hd,flag,scale) specifies the scaling of
the gain and the numerator coefficients of all
second-order sections. scale can be 'none',
'inf' (infinity-norm) or 'two' (2-norm).
Using infinity-norm scaling with up ordering
minimizes the probability of overflow in the
realization. Using 2-norm scaling with down
ordering minimizes the peak roundoff noise.

ss Converts the dfilt to state-space. To see the
separate A,B,C,D matrices for the state-space
model, use [A,B,C,D]=ss(hd).

2-271

dfilt

Method Description

stepz Plots the step response in fvtool

stepz(hd,n) computes the first n samples of
the step response.

stepz(hd,n,Fs) separates the time samples
by T = 1/Fs, where Fs is assumed to be in Hz.

tf Converts the dfilt to a transfer function

zerophase Plots the zero-phase response in fvtool

zpk Converts the dfilt to zeros-pole-gain form

zplane Plots a pole-zero plot in fvtool

Viewing Properties

As with any object, use get to view a dfilt properties. To see a specific
property, use

get(hd,'property')

To see all properties for an object, use

get(hd)

Note If you have Filter Design Toolbox, dfilt objects include
an arithmetic property. You can change the internal arithmetic
of the filter from double- precision to single-precision using:
hd.arithmetic = 'single'.

If you have both Filter Design Toolbox and Fixed-Point Toolbox,
you can change the arithmetic property to fixed-point using:
hd.arithmetic = 'fixed'

2-272

dfilt

Changing Properties

To set specific properties, use

set(hd,'property1',value,'property2',value,...)

Note that you must use single quotation marks around the property
name. Use single quotation marks around the value argument when
the value is a string, such as specifyall or fixed.

Copying an Object

To create a copy of an object, use the copy method.

h2 = copy(hd)

Note Using the syntax H2 = hd copies only the object handle and does
not create a new, independent object.

Converting Between Filter Structures

To change the filter structure of a dfilt object hd, use

hd2 = convert(hd,'structure_string');

where structure_string is any valid structure name in single
quotation marks. If hd is a cascade or parallel structure, each stage
is converted to the new structure.

Using Filter States

Two properties control the filter states:

• states — stores the current states of the filter. Before the filter is
applied, the states correspond to the initial conditions and after
the filter is applied, the states correspond to the final conditions.
For df1, df1t, df1sos and df1tsos structures, states returns a
filtstates object.

2-273

dfilt

• PersistentMemory — controls whether filter states are saved. The
default value is 'false', which causes the initial conditions to
be reset to zero before filtering and turns off the display of states
information. Setting PersistentMemory to 'true' allows the filter
to use your initial conditions or to reuse the final conditions from
a previous filtering operation as the initial conditions of the next
filtering operation. The true setting also displays information about
the filter states.

Note If you set the states and want to use them for filtering, you must
set PersistentMemory to 'true' before you use the filter.

Examples Create a direct-form I filter and use a method to see if it is stable.

[b,a] = butter(8,0.25);
hd = dfilt.df1(b,a)

hd =
FilterStructure: 'Direct-Form I'

Numerator: [1x9 double]
Denominator: [1x9 double]

PersistentMemory: false

isstable(hd)
ans =

1

If a dfilt’s numerator values do not fit on a single line, a description
of the vector is displayed. To see the specific numerator values for this
example, use

get(hd,'numerator')

ans =
Columns 1 through 6

2-274

dfilt

0.0001 0.0009 0.0030 0.0060 0.0076 0.0060
Columns 7 through 9

0.0030 0.0009 0.0001

Create an array containing two dfilt objects, apply a method and
verify that the method acts on both objects, and use a method to test
whether the objects are FIR objects.

b = fir1(5,.5);
hd = dfilt.dffir(b); % Create an FIR object
[b,a] = butter(5,.5);
hd(2) = dfilt.df2t(b,a); % Create DF2T object and place

% in the second column of hd.

[h,w] = freqz(hd);
size(h) % Verify that resulting h is
ans = % 2 columns.

8192 2
size(w) % Verify that resulting w is
ans = % 1 column.

8192 1

test_fir = isfir(hd)
test_fir =

1 0 % hd(1) is FIR and hd(2) is not.

Refer to the reference pages for each structure for more examples.

See Also dfilt, design, fdesign, realizemdl, sos, stepz

dfilt.cascade, dfilt.df1, dfilt.df1t, dfilt.df2, dfilt.df2t,
dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfir,
dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,
dfilt.latticemamax, dfilt.latticemamin, dfilt.parallel,
dfilt.statespace, filter, freqz, grpdelay, impz, zplane in Signal
Processing Toolbox documentation

2-275

dfilt.allpass

Purpose Allpass filter

Syntax hd = dfilt.allpass(c)

Description hd = dfilt.allpass(c) constructs an allpass filter with the minimum
number of multipliers from the elements in vector c. To be valid, c
must contain one, two, three, or four real elements. The number of
elements in c determines the order of the filter. For example, c with two
elements creates a second-order filter and c with four elements creates
a fourth-order filter.

The transfer function for the allpass filter is defined by

given the coefficients in c.

To construct a cascade of allpass filter objects, use
dfilt.cascadeallpass. For more information about creating cascades
of allpass filters, refer to dfilt.cascadeallpass.

Properties The following table provides a list of all the properties associated with
an allpass dfilt object.

Property Name Brief Description

AllpassCoefficients Contains the coefficients for the allpass
filter object

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering — gains,
delays, sums, products, and input/output.

2-276

dfilt.allpass

Property Name Brief Description

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False
is the default setting.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions. They also provide linkage
between the sections of a multisection filter,
such as a cascade filter. For details, refer to
filtstates in Signal Processing Toolbox
documentation or in the Help system.

Examples This example constructs and displays the information about a
second-order allpass filter that uses the minimum number of
multipliers.

c = [1.5, 0.7];
% Create a second-order dfilt object.
hd = dfilt.allpass(c)
hd =

FilterStructure: 'Minimum-Multiplier Allpass'
AllpassCoefficients: [1.5 0.7]

PersistentMemory: false
States: [0;0;0;0]

info(hd) % Gets information about the filter.
Discrete-Time IIR Filter (real)

Filter Structure : Minimum-Multiplier Allpass
Number of Multipliers : 2
Stable : Yes

2-277

dfilt.allpass

Linear Phase : No

Implementation Cost
Number of Multipliers : 2
Number of Adders : 4
Number of States : 4
MultPerInputSample : 2
AddPerInputSample : 4

See Also dfilt, dfilt.cascadeallpass, dfilt.cascadewdfallpass,
dfilt.latticeallpass, mfilt.iirdecim, mfilt.iirinterp

2-278

dfilt.calattice

Purpose Coupled-allpass, lattice filter

Syntax hd = dfilt.calattice(k1,k2,beta)
hd = dfilt.calattice

Description hd = dfilt.calattice(k1,k2,beta) returns a discrete-time,
coupled-allpass, lattice filter object hd, which is two allpass, lattice filter
structures coupled together. The lattice coefficients for each structure
are vectors k1 and k2. Input argument beta is shown in the diagram
below.

hd = dfilt.calattice returns a default, discrete-time coupled-allpass,
lattice filter object, hd. The default values are k1 = k2 = [], which is the
default value for dfilt.latticeallpass, and beta = 1. This filter
passes the input through to the output unchanged.

calattice
(Coupled−Allpass Lattice)

1
y

z

1

z (6)

z

1

z (5)

z

1

z (4)

z

1

z (3)

z

1

z (2)

z

1

z (1)

H2(z)

H1(z)

conj(k2(2)) conj(k2(2))

k1(1)k1(2)k1(3)

conj(k1(3))

0.5

conj(k1(2))

beta

−K−

k2(1)k2(2)k2(3)

conj(k2(3))

conj(k1(1))

1
x

2-279

dfilt.calattice

Example Specify a third-order lattice coupled-allpass filter structure for a dfilt
filter, hd with the following code.

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
hd = dfilt.calattice(k1,k2,beta)

k1 =

0.9511 + 0.3088i
0.7511 + 0.1158i

k2 =

0.7502 - 0.1218i

beta =

0.1385 + 0.9904i

hd =

FilterStructure: 'Coupled-Allpass Lattice'
Allpass1: [2x1 double]
Allpass2: 0.7502- 0.1218i

Beta: 0.1385+ 0.9904i
PersistentMemory: false

States: [3x1 double]

Notice that the Allpass1 and Allpass2 properties store vectors of
coefficients.

hd.Allpass1

ans =

0.9511 + 0.3088i

2-280

dfilt.calattice

0.7511 + 0.1158i

See Also dfilt.calatticepc

dfilt, dfilt.latticeallpass, dfilt.latticear,
dfilt.latticearma, dfilt.latticemamax, dfilt.latticemamin in
Signal Processing Toolbox documentation

2-281

dfilt.calatticepc

Purpose Coupled-allpass, power-complementary lattice filter

Syntax hd = dfilt.calatticepc(k1,k2)
hd = dfilt.calatticepc

Description hd = dfilt.calatticepc(k1,k2) returns a discrete-time,
coupled-allpass, lattice filter object hd, with power-complementary
output. This object is two allpass lattice filter structures coupled
together to produce complementary output. The lattice coefficients for
each structure are vectors, k1 and k2, respectively. beta is shown in the
following diagram.

hd = dfilt.calatticepc returns a default, discrete-time,
coupled-allpass, lattice filter object hd, with power-complementary
output. The default values are k1 = k2 = [], which is the default value
for the dfilt.latticeallpass. The default for beta = 1. This filter
passes the input through to the output unchanged.

2-282

dfilt.calatticepc

Example Specify a third-order lattice coupled-allpass power complementary
filter structure for a filter hd with the following code. You see from the
returned properties that Allpass1 and Allpass2 contain vectors of
coefficients for the constituent filters.

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
hd = dfilt.calatticepc(k1,k2,beta)
k1 =

0.9511 + 0.3088i

2-283

dfilt.calatticepc

0.7511 + 0.1158i

k2 =

0.7502 - 0.1218i

beta =

0.1385 + 0.9904i

hd =

FilterStructure: 'Coupled-Allpass Lattice, Power
Complementary Output'

Allpass1: [2x1 double]
Allpass2: 0.7502- 0.1218i

Beta: 0.1385+ 0.9904i
PersistentMemory: false

States: [3x1 double]

To see the coefficients for Allpass1, check the property values.

get(hd,'Allpass1')

ans =

0.9511 + 0.3088i
0.7511 + 0.1158i

See Also dfilt.calattice

dfilt, dfilt.latticeallpass, dfilt.latticear,
dfilt.latticearma, dfilt.latticemamax, dfilt.latticemamin in
Signal Processing Toolbox documentation

2-284

dfilt.cascade

Purpose Cascade of discrete-time filters

Syntax Refer to dfilt.cascade in Signal Processing Toolbox for more
information.

Description hd = dfilt.cascade(filterobject1,filterobject2,...) returns
a discrete-time filter object hd of type cascade, which is a serial
interconnection of two or more filter objects filterobject1,
filterobject2, and so on. dfilt.cascade accepts any combination
of dfilt objects (discrete time filters) to cascade, as well as Farrow
filter objects.

You can use the standard notation to cascade one or more filters:

cascade(hd1,hd2,...)

where hd1, hd2, and so on can be mixed types, such as dfilt objects
and mfilt objects.

hd1, hd2, and so on can be fixed-point filters. All filters in the cascade
must be the same arithmetic format — double, single, or fixed. hd,
the filter object returned, inherits the format of the cascaded filters.

Examples Cascade a lowpass filter and a highpass filter to produce a bandpass
filter.

[b1,a1]=butter(8,0.6); % Lowpass

[b2,a2]=butter(8,0.4,'high'); % Highpass

h1=dfilt.df2t(b1,a1);

h2=dfilt.df2t(b2,a2);

hcas=dfilt.cascade(h1,h2) % Bandpass with passband 0.4-0.6

hcas =

Filterstructure: Cascade

Section(1): Direct Form II Transposed

2-285

dfilt.cascade

Section(2): Direct Form II Transposed

PersistentMemory: false

To view the details of one filter section, use

hcas.section(1)
ans =

FilterStructure: 'Direct Form II Transposed'
Arithmetic: 'double'
Numerator: [1x9 double]

Denominator: [1x9 double]
PersistentMemory: false

States: [8x1 double]

See Also dfilt, dfilt.parallel, dfilt.scalar

2-286

dfilt.cascadeallpass

Purpose Cascade of allpass discrete-time filters

Syntax hd = dfilt.cascadeallpass(c1,c2,...)

Description hd = dfilt.cascadeallpass(c1,c2,...) constructs a cascade of
allpass filters, each of which uses the minimum number of multipliers,
given the filter coefficients provided in c1, c2, and so on.

Each vector c represents one section in the cascade filter. c vectors
must contain one, two, three, or four elements as the filter coefficients
for each section. As a result of the design algorithm, each section is a
dfilt.allpass structure whose coefficients are given in the matching c
vector, such as the c1 vector contains the coefficients for the first stage.

States for each section are shared between sections.

Vectors c do not have to be the same length. You can combine various
length vectors in the input arguments. For example, you can cascade
fourth-order sections with second-order sections, or first-order sections.

For more information about the vectors ci and about the transfer
function of each section, refer to dfilt.allpass.

Generally, you do not construct these allpass cascade filters directly.
Instead, they result from the design process for an IIR filter. Refer to the
first example in Examples for more about using dfilt.cascadeallpass
to design an IIR filter.

Properties In the next table, the row entries are the filter properties and a brief
description of each property.

Property Name Brief Description

AllpassCoefficients Contains the coefficients for the allpass
filter object

2-287

dfilt.cascadeallpass

Property Name Brief Description

FilterStructure Describes the signal flow for the filter
object, including all of the active elements
that perform operations during filtering
— gains, delays, sums, products, and
input/output.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False
is the default setting.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions. They also provide linkage
between the sections of a multisection filter,
such as a cascade filter. For details, refer to
filtstates in Signal Processing Toolbox
documentation or in the Help system.

Examples Two examples show how dfilt.cascadeallpass works in very different
applications — designing a halfband IIR filter and constructing an
allpass cascade of dfilt objects.

First, design the IIR halfband filter using cascaded allpass filters.
Each branch of the parallel cascade construction is a cascadeallpass
filter object.

tw = 100; % Transition width of filter to be designed, 100 Hz.

ast = 80; % Stopband attenuation of filter to be designed, 80dB.

fs = 2000; % Sampling frequency of signal to be filtered.

% Store halfband design specs in the specifications object d.

d = fdesign.halfband('tw,ast',tw,ast,fs);

Now perform the actual filter design. hd contains two
dfilt.cascadeallpass objects.

2-288

dfilt.cascadeallpass

hd = design(d,'ellip','filterstructure','cascadeallpass');

% Get summary information about one dfilt.cascadeallpass stage.

hd.Stage(2).Stage(1)

ans =

FilterStructure: 'Cascade Minimum-Multiplier Allpass'

AllpassCoefficients: Section1: [0 0.0602973909571244]

Section2: [0 0.412590720361056]

Section3: [0 0.772715653742923]

PersistentMemory: false

States: [0;0;0;0;0;0;0;0]

NumSamplesProcessed: 0

hd

hd =

FilterStructure: Cascade

Stage(1): Scalar

Stage(2): Parallel

Stage(1): Cascade Minimum-Multiplier Allpass

Stage(2): Cascade

Stage(1): Delay

Stage(2): Cascade Minimum-Multiplier Allpass

PersistentMemory: false

This second example constructs a dfilt.cascadeallpass filter object
directly given allpass coefficients for the input vectors.

section1 = 0.8;
section2 = [1.2,0.7];
section3 = [1.3,0.9];
hd = dfilt.cascadeallpass(section1,section2,section3);
info(hd) % Get information about the filter.
fvtool(hd) % Visualize the filter.

2-289

dfilt.cascadeallpass

hd looks like this, showing both the magnitude and phase responses in
FVTool. Note the units for the magnitude response on the left y-axis.
Clearly this is an allpass filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1.1369

0.2956

1.728

3.1605

4.5929

6.0254
x 10

−14

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

−16.4891

−13.0343

−9.5794

−6.1245

−2.6697

0.7852

P
ha

se
 (

ra
di

an
s)

See Also dfilt, dfilt.allpass, dfilt.cascadewdfallpass, mfilt.iirdecim,
mfilt.iirinterp

2-290

dfilt.cascadewdfallpass

Purpose Cascade allpass WDF filters to construct allpass WDF

Syntax hd = dfilt.cascadewdfallpass(c1,c2,...)

Description hd = dfilt.cascadewdfallpass(c1,c2,...) constructs a cascade of
allpass wave digital filters given the allpass coefficients in the vectors
c1, c2, and so on.

Each c vector contains the coefficients for one section of the cascaded
filter. C vectors must have one, two, or four elements (coefficients).
Three element vectors are not supported.

When the c vector has four elements, the first and third elements of
the vector must be 0. Each section of the cascade is an allpass wave
digital filter, from dfilt.wdfallpass, with the coefficients given by the
corresponding c vector. That is, the first section has coefficients from
vector c1, the second section coefficients come from c2, and on until all
of the c vectors are used.

You can mix the lengths of the c vectors. They do not need to be the
same length. For example, you can cascade several fourth-order sections
(length(c) = 4) with first or second-order sections.

Wave digital filters are usually used to create other filters. This toolbox
uses them to implement halfband filters, which the first example in
Examples demonstrates. They are most often building blocks for filters.

Generally, you do not construct these WDF allpass cascade filters
directly. Instead, they result from the design process for an IIR
filter. Refer to the first example in Examples for more about using
dfilt.cascadewdfallpass to design an IIR filter.

For more information about the c vectors and the transfer function for
the allpass filters, refer to dfilt.wdfallpass.

Properties In the next table, the row entries are the filter properties and a brief
description of each property.

2-291

dfilt.cascadewdfallpass

Property Name Brief Description

AllpassCoefficients Contains the coefficients for the allpass wave
digital filter object

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering — gains,
delays, sums, products, and input/output.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

States This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions. They also provide linkage between
the sections of a multisection filter, such as a
cascade filter. For details, refer to filtstates
in Signal Processing Toolbox documentation
or in the Help system.

Examples To demonstrate two approaches to using dfilt.cascadewdfallpass
to design a filter, these examples show both direct construction and
construction as part of another filter.

The first design shown creates an IIR halfband filter that uses lattice
wave digital filters. Each branch of the parallel connection in the lattice
is an allpass cascade wave digital filter.

tw = 100; % Transition width of filter, 100 Hz.
ast = 80; % Stopband attenuation of filter, 80 dB.
fs = 2000; % Sampling frequency of signal to filter.
% Store halfband specs.
d = fdesign.halfband('tw,ast',tw,ast,fs);

2-292

dfilt.cascadewdfallpass

Now perform the actual halfband design process. hd contains two
dfilt.cascadewdfallpass filters.

hd = design(f,'ellip','filterstructure','cascadewdfallpass');

hd.stage(2).stage(1) % Summary info on dfilt.cascadewdfallpass.

realizemdl(hd.stage(2).stage(1)) % Requires Simulink to realize model.

This example demonstrates direct construction of a
dfilt.cascadewdfallpass filter with allpass coefficients.

section1 = 0.8;
section2 = [1.5,0.7];
section3 = [1.8,0.9];
hd = dfilt.cascadewdfallpass(section1,section2,section3);
info(hd) % Show information about the filter.
fvtool(hd) % Visualize the filter.

Using FVTool lets you view the filter response.

2-293

dfilt.cascadewdfallpass

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−2

0

2

4

6

8

10

12

14

16

x 10
−14

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

See Also dfilt, dfilt.wdfallpass

2-294

dfilt.df1

Purpose Discrete-time, direct-form I filter

Syntax Refer to dfilt.df1 in Signal Processing Toolbox.

Description hd = dfilt.df1 returns a default discrete-time, direct-form I filter
object that uses double-precision arithmetic. By default, the numerator
and denominator coefficients b and a are set to 1. With these coefficients
the filter passes the input to the output without changes.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

Note a(1), the leading denominator coefficient, cannot be 0. To allow
you to change the arithmetic setting to fixed or single, a(1) must be
equal to 1.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the direct-form I filter
implemented by dfilt.df1. To help you see how the filter processes the
coefficients, input, output, and states of the filter, as well as numerical
operations, the figure includes the locations of the arithmetic and data
type format elements within the signal flow.

2-295

dfilt.df1

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the word
“format.” In this use, “format” means the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFormat, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

2-296

dfilt.df1

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale ,
SignedDenominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

InputFormat InputWordLength InputFracLength None

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode,
CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label DenProdFormat, which always follows
a denominator coefficient multiplication element in the signal flow. The
label indicates that denominator coefficients leave the multiplication
element with the word length and fraction length associated with
product operations that include denominator coefficients. From
reviewing the table, you see that the DenProdFormat refers to the
properties ProdWordLength, ProductMode and DenProdFracLength
that fully define the denominator format after multiply (or product)
operations.

Properties In this table you see the properties associated with df1 implementations
of dfilt objects.

2-297

dfilt.df1

Note The table lists all the properties that a filter can have. Many
of the properties are dynamic, meaning they exist only in response to
the settings of other properties. You might not see all of the listed
properties all the time. To view all the properties for a filter at any time,
use get(hd) where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant
bits (KeepLSB) when output results need
shorter word length than the accumulator
supports. To let you set the word length and
the precision (the fraction length) used by the
output from the accumulator, set AccumMode
to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the
accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in
the signal flow diagrams) before performing
sum operations.

2-298

dfilt.df1

Property Name Brief Description

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting
the value to false enables you to change
the NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Specifies the fraction length the filter
algorithm uses to interpret the results of
product operations involving denominator
coefficients. You can change the value for
this property when you set AccumMode to
SpecifyPrecision.

DenFracLength Set the fraction length the filter uses
to interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

Denominator Stores the denominator coefficients for the
IIR filter.

DenProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
denominator coefficients. You can change this
property value when you set ProductMode to
SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering — gains,
delays, sums, products, and input/output.

2-299

dfilt.df1

Property Name Brief Description

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to interpret
input data.

NumAccumFracLength Specifies how the filter algorithm interprets
the results of addition operations involving
numerator coefficients. You can change the
value of this property after you set AccumMode
to SpecifyPrecision.

Numerator Holds the numerator coefficient values for the
filter.

NumFracLength Sets the fraction length used to interpret the
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
numerator coefficients. Available to be
changed when you set ProductMode to
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set OutputMode
to SpecifyPrecision.

OutputWordLength Determines the word length used for the
output data.

2-300

dfilt.df1

Property Name Brief Description

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow —
they maintain full precision.

ProductMode Determines how the filter handles the output
of product operations. Choose from full
precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words. For
you to be able to set the precision (the fraction
length) used by the output from the multiplies,
you set ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

2-301

dfilt.df1

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix — Round negative numbers up
and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow —
they maintain full precision.

2-302

dfilt.df1

Property Name Brief Description

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions. Notice that the states use fi objects,
with the associated properties from those
objects. For details, refer to filtstates in
Signal Processing Toolbox documentation or
in the Help system.

Examples Specify a second-order direct-form I structure for a dfilt object, hd,
with the following code:

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1(b,a)
hd =

FilterStructure: 'Direct-Form I'
Arithmetic: 'double'
Numerator: [0.3000 0.6000 0.3000]

Denominator: [1 0 0.2000]
PersistentMemory: false

States: Numerator: [2x1 double]
Denominator:[2x1 double]

Now convert hd to a fixed-point filter:

set(hd,'arithmetic','fixed')
hd

hd =

2-303

dfilt.df1

FilterStructure: 'Direct-Form I'
Arithmetic: 'fixed'
Numerator: [0.3000 0.6000 0.3000]

Denominator: [1 0 0.2000]
PersistentMemory: false

States: Numerator: [2x1 fi]
Denominator:[2x1 fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputFracLength: 15

ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'
AccumWordLength: 40

CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

See Also dfilt, dfilt.df1t, dfilt.df2, dfilt.df2t

2-304

dfilt.df1sos

Purpose Discrete-time, SOS direct-form I filter

Syntax Refer to dfilt.df1sos in Signal Processing Toolbox.

Description hd = dfilt.df1sos(s) returns a discrete-time, second-order section,
direct-form I filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.df1sos(b1,a1,b2,a2,...) returns a discrete-time,
second-order section, direct-form I filter object hd, with coefficients for
the first section given in the b1 and a1 vectors, for the second section
given in the b2 and a2 vectors, and so on.

hd = dfilt.df1sos(...,g) includes a gain vector g. The elements of g
are the gains for each section. The maximum length of g is the number
of sections plus one. When you do not specify g, all gains default to one.

hd = dfilt.df1sos returns a default, discrete-time, second-order
section, direct-form I filter object, hd. This filter passes the input
through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To
allow you to change the arithmetic setting to fixed or single, a(1)
must be equal to 1.

2-305

dfilt.df1sos

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the direct-form I filter
implemented in second-order sections by dfilt.df1sos. To help you
see how the filter processes the coefficients, input, and states of the
filter, as well as numerical operations, the figure includes the locations
of the formatting objects within the signal flow.

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the letters
“frmt” (format). In this use, “frmt“ means the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and fraction
length used to interpret the data input to the filter. The format
properties InputWordLength and InputFracLength (as shown in the

2-306

dfilt.df1sos

table) store the word length and the fraction length in bits. Similarly
consider NumFrmt, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFrmt CoeffWordLength DenFracLength CoeffAutoScale,
Signed, Denominator

DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

DenStateFrmt DenStateWordLength DenStateFracLength CastBeforeSum,
States

InputFrmt InputWordLength InputFracLength None

NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode,
CastBeforeSum

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

NumStateFrmt NumStateWordLength NumStateFracLength States

OutputFrmt OutputWordLength OutputFracLength OutputMode

ScaleValueFrmt CoeffWordLength ScaleValueFracLengthCoeffAutoScale,
ScaleValues

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label DenProdFrmt, which always follows a
denominator coefficient multiplication element in the signal flow. The

2-307

dfilt.df1sos

label indicates that denominator coefficients leave the multiplication
element with the word length and fraction length associated with
product operations that include denominator coefficients. From
reviewing the table, you see that the DenProdFrmt refers to the
properties ProdWordLength, ProductMode and DenProdFracLength
that fully define the denominator format after multiply (or product)
operations.

Properties In this table you see the properties associated with SOS implementation
of direct-form I dfilt objects.

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

2-308

dfilt.df1sos

Property Name Brief Description

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the word
length and the precision (the fraction length)
used by the output from the accumulator, set
AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in
the signal flow diagrams) before performing
sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting
the value to false enables you to change
the NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

2-309

dfilt.df1sos

Property Name Brief Description

DenAccumFracLength Specifies the fraction length used to interpret
data in the accumulator used to hold the
results of sum operations. You can change
the value for this property when you set
AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses
to interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

DenProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
denominator coefficients. You can
change this property value when you set
ProductMode to SpecifyPrecision.

DenStateFracLength Specifies the fraction length used to interpret
the states associated with denominator
coefficients in the filter.

DenStateWordLength Specifies the word length used to represent
the states associated with denominator
coefficients in the filter.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to interpret
input data.

2-310

dfilt.df1sos

Property Name Brief Description

NumAccumFracLength Specifies how the filter algorithm interprets
the results of addition operations involving
numerator coefficients. You can change
the value of this property after you set
AccumMode to SpecifyPrecision.

NumFracLength Sets the fraction length used to interpret the
value of numerator coefficients.

NumStateFracLength Specifies the fraction length used to interpret
the states associated with numerator
coefficient operations in the filter.

NumWordFracLength Specifies the word length used to interpret
the states associated with numerator
coefficient operations in the filter.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you set
OutputMode to SpecifyPrecision.

2-311

dfilt.df1sos

Property Name Brief Description

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

• AvoidOverflow — directs the filter to
set the output data word length and
fraction length to avoid causing the data
to overflow.

• BestPrecision — directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

• SpecifyPrecision — lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length applied for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values
to the nearest representable value using
modular arithmetic). The choice you make
affects only the accumulator and output
arithmetic. Coefficient and input arithmetic
always saturates. Finally, products never
overflow—they maintain full precision.

2-312

dfilt.df1sos

Property Name Brief Description

ProductMode Determines how the filter handles the output
of product operations. Choose from full
precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from
the multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False
is the default setting.

2-313

dfilt.df1sos

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are
exactly halfway between the two nearest
allowable quantized values are rounded
up only if the least significant bit (after
rounding) would be set to 1.

• fix — Round negative numbers up
and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest
allowable quantized values are rounded
up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow —
they maintain full precision.

2-314

dfilt.df1sos

Property Name Brief Description

ScaleValueFracLength Scale values work with SOS filters. Setting
this property controls how your filter
interprets the scale values by setting the
fraction length. Only available when you
disable AutoScaleMode by setting it to
false.

ScaleValues Scaling for the filter objects in SOS filters.

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

SosMatrix Holds the filter coefficients as property
values. Displays the matrix in the format
[sections x coefficients/section datatype]. A
[15x6 double] SOS matrix represents a
filter with 6 coefficients per section and 15
sections, using data type double to represent
the coefficients.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions. Notice that the states use
fi objects, with the associated properties
from those objects. For details, refer to
filtstates in Signal Processing Toolbox
documentation or in the Help system.

StateWordLength Sets the word length used to represent the
filter states.

Examples Specify a fixed-point, second-order section, direct-form I dfilt object
with the following code:

b=[0.3 0.6 0.3];

2-315

dfilt.df1sos

a=[1 0 0.2];
hd=dfilt.df1sos(b,a)

hd =

FilterStructure: 'Direct-Form I, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [0.3000 0.6000 0.3000 1 0 0.2000]

ScaleValues: [2x1 double]
PersistentMemory: false

States: Numerator: [2x1 double]
Denominator:[2x1 double]

hd.arithmetic='fixed'

hd =

FilterStructure: 'Direct-Form I, Second-Order Sections'
ScaleValues: [2x1 double]
Arithmetic: 'fixed'
sosMatrix: [0.3000 0.6000 0.3000 1 0 0.2000]

PersistentMemory: false
States: Numerator: [2x1 fi]

Denominator:[2x1 fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

NumStateWordLength: 16
NumStateFracLength: 15

2-316

dfilt.df1sos

DenStateWordLength: 16
DenStateFracLength: 15

ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'
AccumWordLength: 40

CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

See Also dfilt, dfilt.df2tsos

2-317

dfilt.df1t

Purpose Discrete-time, direct-form I transposed filter

Syntax Refer to dfilt.df1t in Signal Processing Toolbox.

Description hd = dfilt.df1t(b,a) returns a discrete-time, direct-form I
transposed filter object hd, with numerator coefficients b and
denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.df1t returns a default, discrete-time, direct-form I
transposed filter object hd, with b=1 and a=1. This filter passes the
input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To
allow you to change the arithmetic setting to fixed or single, a(1)
must be equal to 1.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the transposed direct-form
I filter implemented by dfilt.df1t. To help you see how the filter
processes the coefficients, input, and states of the filter, as well as
numerical operations, the figure includes the locations of the formatting
objects within the signal flow.

2-318

dfilt.df1t

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the letters
“frmt” (format). In this use, “frmt” means the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFrmt, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

2-319

dfilt.df1t

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFrmt CoeffWordLength DenFracLength CoeffAutoScale, ,
Signed, Denominator

DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

DenStateFrmt DenStateWordLength DenStateFracLength CastBeforeSum,
States

InputFrmt InputWordLength InputFracLength None

Multiplicandfrmt Multiplicand-
WordLength

Multiplicand-
FracLength

CastBeforeSum

NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode,
CastBeforeSum

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,
Signed,
Numerator

NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

NumStateFrmt NumStateWord-
Length

NumStateFrac-
Length

States

OutputFrmt OutputWordLength OutputFracLength OutputMode

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label DenProdFrmt, which always follows a
denominator coefficient multiplication element in the signal flow. The
label indicates that denominator coefficients leave the multiplication
element with the word length and fraction length associated with
product operations that include denominator coefficients. From

2-320

dfilt.df1t

reviewing the table, you see that the DenProdFrmt refers to the
properties ProdWordLength, ProductMode and DenProdFracLength
that fully define the denominator format after multiply (or product)
operations.

Properties In this table you see the properties associated with df1t implementation
of dfilt objects.

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

AccumMode Determines how the accumulator
outputs stored values. Choose from full
precision (FullPrecision), or whether to
keep the most significant bits (KeepMSB)
or least significant bits (KeepLSB) when
output results need shorter word length
than the accumulator supports. To let
you set the word length and the precision
(the fraction length) used by the output
from the accumulator, set AccumMode to
SpecifyPrecision.

2-321

dfilt.df1t

Property Name Brief Description

AccumWordLength Sets the word length used to store data
in the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses.
Gives you the options double, single,
and fixed. In short, this property
defines the operating mode for your filter.

CastBeforeSum Specifies whether to cast numeric data
to the appropriate accumulator format
(as shown in the signal flow diagrams)
before performing sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting
the value to false enables you to change
the NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to
filter coefficients.

DenAccumFracLength Specifies the fraction length used to
interpret data in the accumulator used
to hold the results of sum operations.
You can change the value for this
property when you set AccumMode to
SpecifyPrecision.

DenFracLength Set the fraction length the filter uses
to interpret denominator coefficients.
DenFracLength is always available,
but it is read-only until you set
CoeffAutoScale to false.

Denominator Holds the denominator coefficients for
the filter.

2-322

dfilt.df1t

Property Name Brief Description

DenProdFracLength Specifies how the filter algorithm
interprets the results of product
operations involving denominator
coefficients. You can change this property
value when you set ProductMode to
SpecifyPrecision.

DenStateFracLength Specifies the fraction length used to
interpret the states associated with
denominator coefficients in the filter.

FilterStructure Describes the signal flow for the filter
object, including all of the active
elements that perform operations during
filtering — gains, delays, sums, products,
and input/output.

InputFracLength Specifies the fraction length the filter
uses to interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

MultiplicandFracLength Sets the fraction length for values
(multiplicands) used in multiply
operations in the filter.

MultiplicandWordLength Sets the word length applied to the
values input to a multiply operation (the
multiplicands).

NumAccumFracLength Specifies how the filter algorithm
interprets the results of addition
operations involving numerator
coefficients. You can change the value of
this property after you set AccumMode to
SpecifyPrecision.

2-323

dfilt.df1t

Property Name Brief Description

Numerator Holds the numerator coefficient values
for the filter.

NumFracLength Sets the fraction length used to interpret
the value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm
interprets the results of product
operations involving numerator
coefficients. Available to be changed
when you set ProductMode to
SpecifyPrecision.

NumStateFracLength For IIR filters, this defines the binary
point location applied to the numerator
states of the filter. Specifies the fraction
length used to interpret the states
associated with numerator coefficient
operations in the filter.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you
set OutputMode to SpecifyPrecision.

2-324

dfilt.df1t

Property Name Brief Description

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

• AvoidOverflow — directs the filter to
set the output data word length and
fraction length to avoid causing the
data to overflow.

• BestPrecision — directs the filter
to set the output data word length
and fraction length to maximize the
precision in the output data.

• SpecifyPrecision — lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to
overflow conditions in fixed-point
arithmetic. Choose from either saturate
(limit the output to the largest positive
or negative representable value) or
wrap (set overflowing values to the
nearest representable value using
modular arithmetic). The choice you
make affects only the accumulator and
output arithmetic. Coefficient and input
arithmetic always saturates. Finally,
products never overflow—they maintain
full precision.

2-325

dfilt.df1t

Property Name Brief Description

ProductMode Determines how the filter handles the
output of product operations. Choose
from full precision (FullPrecision), or
whether to keep the most significant
bit (KeepMSB) or least significant bit
(KeepLSB) in the result when you need
to shorten the data words. For you to
be able to set the precision (the fraction
length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use
for multiplication operation results.
This property becomes writable (you
can change the value) when you set
ProductMode to SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter
states and memory before each filtering
operation. Lets you decide whether
your filter retains states from previous
filtering runs. False is the default
setting.

2-326

dfilt.df1t

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie
between representable values for the
data format (word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are
exactly halfway between the two
nearest allowable quantized values
are rounded up only if the least
significant bit (after rounding) would
be set to 1.

• fix — Round negative numbers up
and positive numbers down to the
next allowable quantized value.

• floor — Round down to the next
allowable quantized value.

• round — Round to the nearest
allowable quantized value. Numbers
that are halfway between the two
nearest allowable quantized values
are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow
— they maintain full precision.

2-327

dfilt.df1t

Property Name Brief Description

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

StateAutoScale Setting autoscaling for filter states to
true reduces the possibility of overflows
occurring during fixed-point operations.
Set to false, StateAutoScale lets the
filter select the fraction length to limit
the overflow potential.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between
filtering runs or sessions.

StateWordLength Sets the word length used to represent
the filter states.

Examples Specify a second-order direct-form I transposed filter structure for a
dfilt object, hd, with the following code:

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1t(b,a)

hd =

FilterStructure: 'Direct-Form I Transposed'
Arithmetic: 'double'
Numerator: [0.3000 0.6000 0.3000]

Denominator: [1 0 0.2000]
PersistentMemory: false

States: Numerator: [2x1 double]
Denominator:[2x1 double]

2-328

dfilt.df1t

Now convert the filter to single-precision filtering arithmetic.

set(hd,'arithmetic','single')
hd
hd =

FilterStructure: 'Direct-Form I Transposed'
Arithmetic: 'fixed'
Numerator: [0.3000 0.6000 0.3000]

Denominator: [1 0 0.2000]
PersistentMemory: false

States: Numerator: [2x1 fi]
Denominator:[2x1 fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

MultiplicandWordLength: 16
MultiplicandFracLength: 15

StateWordLength: 16
StateAutoScale: true

ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'
AccumWordLength: 40

CastBeforeSum: true

RoundMode: 'convergent'

2-329

dfilt.df1t

OverflowMode: 'wrap'

See Also dfilt, dfilt.df1, dfilt.df2, dfilt.df2t

2-330

dfilt.df1tsos

Purpose Discrete-time, SOS direct-form I transposed filter

Syntax Refer to dfilt.df1tsos in Signal Processing Toolbox.

Description hd = dfilt.df1tsos(s) returns a discrete-time, second-order section,
direct-form I, transposed filter object hd, with coefficients given in the s
matrix.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.df1tsos(b1,a1,b2,a2,...) returns a discrete-time,
second-order section, direct-form I, transposed filter object hd, with
coefficients for the first section given in the b1 and a1 vectors, for the
second section given in the b2 and a2 vectors, etc.

hd = dfilt.df1tsos(...,g) includes a gain vector g. The elements
of g are the gains for each section. The maximum length of g is the
number of sections plus one. If g is not specified, all gains default to one.

hd = dfilt.df1tsos returns a default, discrete-time, second-order
section, direct-form I, transposed filter object, hd. This filter passes the
input through to the output unchanged.

2-331

dfilt.df1tsos

Note The leading coefficient of the denominator a(1) cannot be 0. To
allow you to change the arithmetic setting to fixed or single, a(1)
must be equal to 1.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the direct-form
I transposed filter implemented using second-order sections by
dfilt.df1tsos. To help you see how the filter processes the coefficients,
input, and states of the filter, as well as numerical operations, the figure
includes the locations of the formatting objects within the signal flow.

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated

2-332

dfilt.df1tsos

with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the letters
“frmt” (format). In this use, “frmt” means the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFrmt, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFrmt CoeffWordLength DenFracLength CoeffAutoScale,
Signed,
Denominator

DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

DenStateFrmt DenStateWordLength DenStateFracLength CastBeforeSum,
States

InputFrmt InputWordLength InputFracLength None

MultiplicandFrmt Multiplicand-
WordLength

Multiplicand-
FracLength

CastBeforeSum

NumAccumFrmt AccumWordLength NumAccum-
FracLength

AccumMode,
CastBeforeSum

2-333

dfilt.df1tsos

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

NumStateFrmt NumStateWordLength NumStateFracLength States

OutputFrmt OutputWordLength OutputFracLength OutputMode

ScaleValueFrmt CoeffWordLength ScaleValue-
FracLength

CoeffAutoScale,
ScaleValues

StageInputfrmt StageInput-
WordLength

StageInput-
FracLength

StageInput-
AutoScale

StageOutputFrmt StageOutput-
WordLength

StageOutput-
FracLength

StageOutput-
AutoScale

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label DenProdFrmt, which always follows a
denominator coefficient multiplication element in the signal flow. The
label indicates that denominator coefficients leave the multiplication
element with the word length and fraction length associated with
product operations that include denominator coefficients. From
reviewing the table, you see that the DenProdFrmt refers to the
properties ProdWordLength, ProductMode and DenProdFracLength
that fully define the denominator format after multiply (or product)
operations.

Properties In this table you see the properties associated with SOS implementation
of transposed direct-form I dfilt objects.

2-334

dfilt.df1tsos

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

AccumMode Determines how the accumulator
outputs stored values. Choose from
full precision (FullPrecision), or
whether to keep the most significant
bits (KeepMSB) or least significant
bits (KeepLSB) when output results
need shorter word length than the
accumulator supports. To let you set
the word length and the precision
(the fraction length) used by the
output from the accumulator, set
AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store
data in the accumulator/buffer.

Arithmetic Defines the arithmetic the filter
uses. Gives you the options double,
single, and fixed. In short, this
property defines the operating mode
for your filter.

2-335

dfilt.df1tsos

Property Name Brief Description

CastBeforeSum Specifies whether to cast numeric
data to the appropriate accumulator
format (as shown in the signal flow
diagrams) before performing sum
operations.

CoeffAutoScale Specifies whether the filter
automatically chooses the proper
fraction length to represent filter
coefficients without overflowing.
Turning this off by setting the value
to false enables you to change the
NumFracLength and DenFracLength
properties to specify the precision
used.

CoeffWordLength Specifies the word length to apply to
filter coefficients.

DenAccumFracLength Specifies the fraction length used to
interpret data in the accumulator
used to hold the results of sum
operations. You can change the
value for this property when you set
AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter
uses to interpret denominator
coefficients. DenFracLength is
always available, but it is read-only
until you set CoeffAutoScale to
false.

2-336

dfilt.df1tsos

Property Name Brief Description

DenProdFracLength Specifies how the filter algorithm
interprets the results of product
operations involving denominator
coefficients. You can change this
property value when you set
ProductMode to SpecifyPrecision.

DenStateFracLength Specifies the fraction length used to
interpret the states associated with
denominator coefficients in the filter.

FilterStructure Describes the signal flow for the filter
object, including all of the active
elements that perform operations
during filtering—gains, delays,
sums, products, and input/output.

InputFracLength Specifies the fraction length the
filter uses to interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

MultiplicandFracLength Sets the fraction length for values
(multiplicands) used in multiply
operations in the filter.

MultiplicandWordLength Sets the word length applied to the
values input to a multiply operation
(the multiplicands)

NumAccumFracLength Specifies how the filter algorithm
interprets the results of addition
operations involving numerator
coefficients. You can change the
value of this property after you set
AccumMode to SpecifyPrecision.

2-337

dfilt.df1tsos

Property Name Brief Description

Numerator Holds the numerator coefficient
values for the filter.

NumProdFracLength Specifies how the filter algorithm
interprets the results of product
operations involving numerator
coefficients. Available to be changed
when you set ProductMode to
SpecifyPrecision.

NumStateFracLength For IIR filters, this defines the
binary point location applied to
the numerator states of the filter.
Specifies the fraction length used to
interpret the states associated with
numerator coefficient operations in
the filter.

NumStateWordLength For IIR filters, this defines the word
length applied to the numerator
states of the filter. Specifies the
word length used to interpret the
states associated with numerator
coefficient operations in the filter.

OutputFracLength Determines how the filter
interprets the filter output
data. You can change the value of
OutputFracLength when you set
OutputMode to SpecifyPrecision.

2-338

dfilt.df1tsos

Property Name Brief Description

OutputMode Sets the mode the filter uses to scale
the filtered data for output. You
have the following choices:

• AvoidOverflow — directs the
filter to set the output data word
length and fraction length to
avoid causing the data to overflow.

• BestPrecision — directs the
filter to set the output data word
length and fraction length to
maximize the precision in the
output data.

• SpecifyPrecision — lets you
set the word and fraction lengths
used by the output data from
filtering.

OutputWordLength Determines the word length used for
the output data.

2-339

dfilt.df1tsos

Property Name Brief Description

OverflowMode Sets the mode used to respond to
overflow conditions in fixed-point
arithmetic. Choose from either
saturate (limit the output to
the largest positive or negative
representable value) or wrap (set
overflowing values to the nearest
representable value using modular
arithmetic). The choice you make
affects only the accumulator and
output arithmetic. Coefficient
and input arithmetic always
saturates. Finally, products never
overflow—they maintain full
precision.

ProductMode Determines how the filter handles
the output of product operations.
Choose from full precision
(FullPrecision), or whether
to keep the most significant bit
(KeepMSB) or least significant bit
(KeepLSB) in the result when you
need to shorten the data words. For
you to be able to set the precision
(the fraction length) used by the
output from the multiplies, you set
ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results.
This property becomes writable (you
can change the value) when you set
ProductMode to SpecifyPrecision.

2-340

dfilt.df1tsos

Property Name Brief Description

PersistentMemory Specifies whether to reset the filter
states and memory before each
filtering operation. Lets you decide
whether your filter retains states
from previous filtering runs. False
is the default setting.

2-341

dfilt.df1tsos

Property Name Brief Description

RoundMode Sets the mode the filter uses to
quantize numeric values when the
values lie between representable
values for the data format (word and
fraction lengths).

• convergent — Round up to the
next allowable quantized value.

• ceil — Round to the nearest
allowable quantized value.
Numbers that are exactly halfway
between the two nearest allowable
quantized values are rounded up
only if the least significant bit
(after rounding) would be set to 1.

• fix — Round negative numbers
up and positive numbers down
to the next allowable quantized
value.

• floor — Round down to the next
allowable quantized value.

• round — Round to the nearest
allowable quantized value.
Numbers that are halfway
between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic
always round. Finally, products
never overflow — they maintain full
precision.

2-342

dfilt.df1tsos

Property Name Brief Description

ScaleValueFracLength Scale values work with SOS filters.
Setting this property controls how
your filter interprets the scale
values by setting the fraction length.
Only available when you disable
AutoScaleMode by setting it to
false.

ScaleValues Scaling for the filter objects in SOS
filters.

Signed Specifies whether the filter uses
signed or unsigned fixed-point
coefficients. Only coefficients reflect
this property setting.

SosMatrix Holds the filter coefficients as
property values. Displays the
matrix in the format [sections
x coefficients/sectiondatatype].
A [15x6 double] SOS matrix
represents a filter with 6 coefficients
per section and 15 sections, using
data type double to represent the
coefficients.

StageInputAutoScale Tells the filter whether to set
the stage input data format to
minimize the occurrence of overflow
conditions.

StageInputFracLength Lets you set the fraction length for
stage inputs in SOS filters, if you set
StageInputAutoScale to false.

StageInputWordLength Lets you set the word length for
stage inputs in SOS filters, if you set
StageInputAutoScale to false.

2-343

dfilt.df1tsos

Property Name Brief Description

StageOutputAutoScale Tells the filter whether to set
the stage output data format to
minimize the occurrence of overflow
conditions.

StageOutputFracLength Lets you set the fraction length
for stage outputs in SOS filters, if
you set StageOutputAutoScale to
false.

StageOutputWordLength Lets you set the word length for
stage outputs in SOS filters, if
you set StageOutputAutoScale to
false.

StateAutoScale Setting autoscaling for filter states
to true reduces the possibility
of overflows occurring during
fixed-point operations. Set to false,
StateAutoScale lets the filter select
the fraction length to limit the
overflow potential.

States This property contains the filter
states before, during, and after
filter operations. States act as filter
memory between filtering runs or
sessions.

StateWordLength Sets the word length used to
represent the filter states.

Examples With the following code, this example specifies a second-order section,
direct-form I transposed dfilt object for a filter. Then convert the filter
to fixed-point operation.

b = [0.3 0.6 0.3];

2-344

dfilt.df1tsos

a = [1 0 0.2];
hd = dfilt.df1t(b,a)

hd =

FilterStructure: 'Direct-Form I Transposed'
Arithmetic: 'double'
Numerator: [0.3000 0.6000 0.3000]

Denominator: [1 0 0.2000]
PersistentMemory: false

States: Numerator: [2x1 double]
Denominator:[2x1 double]

set(hd,'arithmetic','fixed')
hd

hd =

FilterStructure: 'Direct-Form I Transposed'
Arithmetic: 'fixed'
Numerator: [0.3000 0.6000 0.3000]

Denominator: [1 0 0.2000]
PersistentMemory: false

States: Numerator: [2x1 fi]
Denominator:[2x1 fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

2-345

dfilt.df1tsos

MultiplicandWordLength: 16
MultiplicandFracLength: 15

StateWordLength: 16
StateAutoScale: true

ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'
AccumWordLength: 40

CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

See Also dfilt, dfilt.df1sos, dfilt.df2sos, dfilt.df2tsos

2-346

dfilt.df2

Purpose Discrete-time, direct-form II filter

Syntax Refer to dfilt.df2 in Signal Processing Toolbox.

Description hd = dfilt.df2(b,a) returns a discrete-time, direct-form II filter
object hd, with numerator coefficients b and denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.df2 returns a default, discrete-time, direct-form II filter
object hd, with b = 1 and a = 1. This filter passes the input through
to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To
allow you to change the arithmetic setting to fixed or single, a(1)
must be equal to 1.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the direct-form II filter
implemented by dfilt.df2. To help you see how the filter processes
the coefficients, input, and states of the filter, as well as numerical
operations, the figure includes the locations of the formatting objects
within the signal flow.

2-347

dfilt.df2

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the letters“frmt”
(format). In this use, “frmt” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFrmt, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

2-348

dfilt.df2

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFrmt CoeffWordLength DenFracLength CoeffAutoScale,
Signed,
Denominator

DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

InputFrmt InputWordLength InputFracLength None

NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode,
CastBeforeSum

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

OutputFrmt OutputWordLength OutputFracLength OutputMode

StateFrmt StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label DenProdFrmt, which always follows a
denominator coefficient multiplication element in the signal flow. The
label indicates that denominator coefficients leave the multiplication
element with the word length and fraction length associated with
product operations that include denominator coefficients. From
reviewing the table, you see that the DenProdFrmt refers to the
properties ProdWordLength, ProductMode and DenProdFracLength
that fully define the denominator format after multiply (or product)
operations.

2-349

dfilt.df2

Properties In this table you see the properties associated with the df2
implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the word
length and the precision (the fraction length)
used by the output from the accumulator, set
AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the
accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

2-350

dfilt.df2

Property Name Brief Description

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in
the signal flow diagrams) before performing
sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting
the value to false enables you to change
the NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Specifies the fraction length used to interpret
data in the accumulator used to hold the
results of sum operations. You can change
the value for this property when you set
AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses
to interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

Denominator Holds the denominator coefficients for IIR
filters.

DenProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
denominator coefficients. You can change this
property value when you set ProductMode
to SpecifyPrecision.

2-351

dfilt.df2

Property Name Brief Description

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering — gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to interpret
input data.

NumAccumFracLength Specifies how the filter algorithm interprets
the results of addition operations involving
numerator coefficients. You can change the
value of this property after you set AccumMode
to SpecifyPrecision.

Numerator Holds the numerator coefficient values for
the filter.

NumFracLength Sets the fraction length used to interpret the
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
numerator coefficients. Available to be
changed when you set ProductMode to
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set OutputMode
to SpecifyPrecision.

2-352

dfilt.df2

Property Name Brief Description

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

• AvoidOverflow — directs the filter to
set the output data word length and
fraction length to avoid causing the data
to overflow.

• BestPrecision — directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

• SpecifyPrecision — lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values
to the nearest representable value using
modular arithmetic). The choice you make
affects only the accumulator and output
arithmetic. Coefficient and input arithmetic
always saturates. Finally, products never
overflow—they maintain full precision.

2-353

dfilt.df2

Property Name Brief Description

ProductMode Determines how the filter handles the output
of product operations. Choose from full
precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from
the multiplies, you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

2-354

dfilt.df2

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if
the least significant bit (after rounding)
would be set to 1.

• fix — Round negative numbers up
and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow —
they maintain full precision.

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

2-355

dfilt.df2

Property Name Brief Description

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that
lets you set the fraction length applied to
interpret the filter states.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions.

StateWordLength Sets the word length used to represent the
filter states.

Examples Specify a second-order direct-form II filter structure for a dfilt object,
hd, with the following code:

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2(b,a)
hd =

FilterStructure: 'Direct Form II'
Numerator: [0.3000 0.6000 0.3000]

Denominator: [1 0 0.2000]
NumberOfSamplesProcessed: 0

ResetStates: 'on'
States: [2x1 double]

To convert the filter to fixed-point arithmetic, change the value of the
Arithmetic property

set(hd,'arithmetic','fixed')

to specify the fixed-point option.

See Also dfilt, dfilt.df1, dfilt.df1t, dfilt.df2t

2-356

dfilt.df2sos

Purpose Discrete-time, SOS, direct-form II filter

Syntax Refer to dfilt.df2sos in Signal Processing Toolbox.

Description hd = dfilt.df2sos(s) returns a discrete-time, second-order section,
direct-form II filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.df2sos(b1,a1,b2,a2,...) returns a discrete-time,
second-order section, direct-form II object, hd, with coefficients for the
first section given in the b1 and a1 vectors, for the second section given
in the b2 and a2 vectors, etc.

hd = dfilt.df2sos(...,g) includes a gain vector g. The elements of g
are the gains for each section. The maximum length of g is the number
of sections plus one. If g is not specified, all gains default to one.

hd = dfilt.df2sos returns a default, discrete-time, second-order
section, direct-form II filter object, hd. This filter passes the input
through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To
allow you to change the arithmetic setting to fixed or single, a(1)
must be equal to 1.

2-357

dfilt.df2sos

Fixed-Point
Filter
Structure

The figure below shows the signal flow for the direct-form II filter
implemented with second-order sections by dfilt.df2sos. To help you
see how the filter processes the coefficients, input, and states of the
filter, as well as numerical operations, the figure includes the locations
of the formatting objects within the signal flow.

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the letters
“frmt” (format). In this use, “frmt” means the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and
fraction length used to interpret the data input to the filter. The
frmt properties InputWordLength and InputFracLength (as shown

2-358

dfilt.df2sos

in the table) store the word length and the fraction length in bits. Or
consider NumFrmt, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFrmt CoeffWordLength DenFracLength CoeffAutoScale,
Signed, sosMatrix

DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength,
sosMatrix

InputFrmt InputWordLength InputFracLength None

NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode,
CastBeforeSum

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,
Signed, sosMatrix

NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

OutputFrmt OutputWordLength OutputFracLength OutputMode

ScaleValueFrmat CoeffWordLength ScaleValue-
FracLength

CoeffAutoScale,
ScaleValues

StageInputFormt StageInput-
WordLength

StageInput-
FracLength

StageInput-
AutoScale

StageOutputFrmt StageOutput-
WordLength

StageOutput-
FracLength

StageOutput-
AutoScale

StateFrmt StateWordLength StateFracLength CastBeforeSum,
States

2-359

dfilt.df2sos

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label DenProdFrmt, which always follows a
denominator coefficient multiplication element in the signal flow. The
label indicates that denominator coefficients leave the multiplication
element with the word length and fraction length associated with
product operations that include denominator coefficients. From
reviewing the table, you see that the DenProdFrmt refers to the
properties ProdWordLength, ProductMode and DenProdFracLength
that fully define the denominator format after multiply (or product)
operations.

Properties In this table you see the properties associated with second-order section
implementation of direct-form II dfilt objects.

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

2-360

dfilt.df2sos

Property Name Brief Description

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than
the accumulator supports. To let you
set the word length and the precision
(the fraction length) used by the output
from the accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses.
Gives you the options double, single, and
fixed. In short, this property defines the
operating mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to
the appropriate accumulator format (as
shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting
the value to false enables you to change
the NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

2-361

dfilt.df2sos

Property Name Brief Description

DenAccumFracLength Specifies the fraction length used to
interpret data in the accumulator used to
hold the results of sum operations. You can
change the value for this property when
you set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses
to interpret denominator coefficients.
DenFracLength is always available, but it
is read-only until you set CoeffAutoScale
to false.

DenProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
denominator coefficients. You can
change this property value when you set
ProductMode to SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses
to interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

NumAccumFracLength Specifies how the filter algorithm interprets
the results of addition operations involving
numerator coefficients. You can change
the value of this property after you set
AccumMode to SpecifyPrecision.

NumFracLength Sets the fraction length used to interpret
the value of numerator coefficients.

2-362

dfilt.df2sos

Property Name Brief Description

NumProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
numerator coefficients. Available to be
changed when you set ProductMode to
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you set
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

• AvoidOverflow — directs the filter to
set the output data word length and
fraction length to avoid causing the data
to overflow.

• BestPrecision — directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

• SpecifyPrecision — lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

2-363

dfilt.df2sos

Property Name Brief Description

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic.
Choose from either saturate (limit
the output to the largest positive or
negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular
arithmetic). The choice you make
affects only the accumulator and output
arithmetic. Coefficient and input
arithmetic always saturates. Finally,
products never overflow — they maintain
full precision.

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether
to keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from
the multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False
is the default setting.

2-364

dfilt.df2sos

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are
exactly halfway between the two nearest
allowable quantized values are rounded
up only if the least significant bit (after
rounding) would be set to 1.

• fix — Round negative numbers up
and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next
allowable quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest
allowable quantized values are rounded
up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow —
they maintain full precision.

2-365

dfilt.df2sos

Property Name Brief Description

ScaleValueFracLength Scale values work with SOS filters. Setting
this property controls how your filter
interprets the scale values by setting the
fraction length. Only available when you
disable AutoScaleMode by setting it to
false.

ScaleValues Scaling for the filter objects in SOS filters.

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

SosMatrix Holds the filter coefficients as property
values. Displays the matrix in the format
[sections x coefficients/section datatype].
A [15x6 double] SOS matrix represents
a filter with 6 coefficients per section and
15 sections, using data type double to
represent the coefficients.

StageInputAutoScale Tells the filter whether to set the stage
input data format to minimize the
occurrence of overflow conditions.

StageInputFracLength Lets you set the fraction length for
stage inputs in SOS filters, if you set
StageInputAutoScale to false.

StageInputWordLength Lets you set the word length for
stage inputs in SOS filters, if you set
StageInputAutoScale to false.

StageOutputAutoScale Tells the filter whether to set the stage
output data format to minimize the
occurrence of overflow conditions.

2-366

dfilt.df2sos

Property Name Brief Description

StageOutputFracLength Lets you set the fraction length for
stage outputs in SOS filters, if you set
StageOutputAutoScale to false.

StageOutputWordLength Lets you set the word length for stage
outputs in SOS filters, if you set
StageOutputAutoScale to false.

StateFracLength When you set StateAutoScale to false,
you enable the StateFracLength property
that lets you set the fraction length applied
to interpret the filter states.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between
filtering runs or sessions.

StateWordLength Sets the word length used to represent the
filter states.

Examples Specify a second-order section, direct-form II dfilt object for a
Butterworth filter converted to second-order sections, with the following
code:

[z,p,k] = butter(30,0.5);

[s,g] = zp2sos(z,p,k);

hd = dfilt.df2sos(s,g)

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'double'

sosMatrix: [15x6 double]

ScaleValues: [16x1 double]

PersistentMemory: false

2-367

dfilt.df2sos

States: [2x15 double]

With the SOS filter constructed, now change the filter operation to
single-precision filtering, and then to fixed-point filtering.

set(hd,'arithmetic','single')

hd

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'single'

sosMatrix: [15x6 double]

ScaleValues: [16x1 double]

PersistentMemory: false

States: [2x15 single]

hd.arithmetic='fixed'

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'fixed'

sosMatrix: [15x6 double]

ScaleValues: [16x1 double]

PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16

CoeffAutoScale: true

Signed: true

InputWordLength: 16

InputFracLength: 15

StageInputWordLength: 16

StageInputAutoScale: true

2-368

dfilt.df2sos

StageOutputWordLength: 16

StageOutputAutoScale: true

OutputWordLength: 16

OutputMode: 'AvoidOverflow'

StateWordLength: 16

StateFracLength: 15

ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'

AccumWordLength: 40

CastBeforeSum: true

RoundMode: 'convergent'

OverflowMode: 'wrap'

See Also dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2tsos

2-369

dfilt.df2t

Purpose Discrete-time, direct-form II transposed filter

Syntax Refer to dfilt.df2t in Signal Processing Toolbox.

Description hd = dfilt.df2t(b,a) returns a discrete-time, direct-form II
transposed filter object hd, with numerator coefficients b and
denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.df2t returns a default, discrete-time, direct-form II
transposed filter object hd, with b = 1 and a = 1. This filter passes the
input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To
allow you to change the arithmetic setting to fixed or single, a(1)
must be equal to 1.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the direct-form II
transposed filter implemented by dfilt.df2t. To help you see how the
filter processes the coefficients, input, and states of the filter, as well as
numerical operations, the figure includes the locations of the formatting
objects within the signal flow.

2-370

dfilt.df2t

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the letters
“frmt.” In this use, “frmt” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and
fraction length used to interpret the data input to the filter. The

2-371

dfilt.df2t

format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFrmt, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

Signal Flow
Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFrmt CoeffWordLength DenFracLength CoeffAutoScale,Signed,
Denominator

DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

InputFrmt InputWordLength InputFracLength None

NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode,
CastBeforeSum

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

OutputFrmt OutputWordLength OutputFracLength OutputMode

StateFrmt StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label DenProdFrmt, which always follows a
denominator coefficient multiplication element in the signal flow. The
label indicates that denominator coefficients leave the multiplication
element with the word length and fraction length associated with
product operations that include denominator coefficients. From
reviewing the table, you see that the DenProdFrmt refers to the

2-372

dfilt.df2t

properties ProdWordLength, ProductMode and DenProdFracLength
that fully define the denominator format after multiply (or product)
operations.

Properties In this table you see the properties associated with df2t implementation
of dfilt objects.

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant
bits (KeepLSB) when output results need
shorter word length than the accumulator
supports. To let you set the word length and
the precision (the fraction length) used by the
output from the accumulator, set AccumMode
to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the
accumulator/buffer.

2-373

dfilt.df2t

Property Name Brief Description

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in
the signal flow diagrams) before performing
sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting
the value to false enables you to change
the NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Specifies the fraction length used to interpret
data in the accumulator used to hold the
results of sum operations. You can change
the value for this property when you set
AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses
to interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

Denominator Holds the denominator coefficients for IIR
filters.

2-374

dfilt.df2t

Property Name Brief Description

DenProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
denominator coefficients. You can change this
property value when you set ProductMode to
SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to interpret
input data.

NumAccumFracLength Specifies how the filter algorithm interprets
the results of addition operations involving
numerator coefficients. You can change the
value of this property after you set AccumMode
to SpecifyPrecision.

Numerator Holds the numerator coefficient values for the
filter.

NumFracLength Sets the fraction length used to interpret the
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
numerator coefficients. Available to be
changed when you set ProductMode to
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set OutputMode
to SpecifyPrecision.

2-375

dfilt.df2t

Property Name Brief Description

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

• AvoidOverflow — directs the filter to set
the output data word length and fraction
length to avoid causing the data to overflow.

• BestPrecision — directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

• SpecifyPrecision — lets you set the word
and fraction lengths used by the output
data from filtering.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow —
they maintain full precision.

2-376

dfilt.df2t

Property Name Brief Description

ProductMode Determines how the filter handles the output
of product operations. Choose from full
precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words. For
you to be able to set the precision (the fraction
length) used by the output from the multiplies,
you set ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

2-377

dfilt.df2t

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix — Round negative numbers up
and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow —
they maintain full precision.

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

2-378

dfilt.df2t

Property Name Brief Description

StateAutoScale Setting autoscaling for filter states to true
reduces the possibility of overflows occurring
during fixed-point operations. Set to false,
StateAutoScale lets the filter select the
fraction length to limit the overflow potential.

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that
lets you set the fraction length applied to
interpret the filter states.

States This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions.

StateWordLength Sets the word length used to represent the
filter states.

Examples Create a fixed-point filter by specifying a second-order direct-form II
transposed filter structure for a dfilt object, and then converting the
double-precision arithmetic setting to fixed-point.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2t(b,a)

hd =

FilterStructure: 'Direct-Form II Transposed'
Arithmetic: 'double'
Numerator: [0.3000 0.6000 0.3000]

Denominator: [1 0 0.2000]
PersistentMemory: false

States: [2x1 double]

2-379

dfilt.df2t

set(hd,'arithmetic','fixed')
hd

hd =

FilterStructure: 'Direct-Form II Transposed'
Arithmetic: 'fixed'
Numerator: [0.3000 0.6000 0.3000]

Denominator: [1 0 0.2000]
PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputFracLength: 15

StateWordLength: 16
StateAutoScale: true

ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'
AccumWordLength: 40

CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

See Also dfilt, dfilt.df1, dfilt.df1t, dfilt.df2

2-380

dfilt.df2tsos

Purpose Discrete-time, SOS direct-form II transposed filter

Syntax Refer to dfilt.df2tsos in Signal Processing Toolbox.

Description hd = dfilt.df2sos(s) returns a discrete-time, second-order section,
direct-form II, transposed filter object hd, with coefficients given in
the matrix s.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.df2tsos(b1,a1,b2,a2,...) returns a discrete-time,
second-order section, direct-form II, transposed filter object hd, with
coefficients for the first section given in the b1 and a1 vectors, for the
second section given in the b2 and a2 vectors, etc.

hd = dfilt.df2tsos(...,g) includes a gain vector g. The elements
of g are the gains for each section. The maximum length of g is the
number of sections plus one. If g is not specified, all gains default to one.

hd = dfilt.df2tsos returns a default, discrete-time, second-order
section, direct-form II, transposed filter object, hd. This filter passes the
input through to the output unchanged.

2-381

dfilt.df2tsos

Note The leading coefficient of the denominator a(1) cannot be 0. To
allow you to change the arithmetic setting to fixed or single, a(1)
must be equal to 1.

Fixed-Point
Filter
Structure

The figure below shows the signal flow for the second-order section
transposed direct-form II filter implemented by dfilt.dftsos. To help
you see how the filter processes the coefficients, input, and states of the
filter, as well as numerical operations, the figure includes the locations
of the formatting objects within the signal flow.

2-382

dfilt.df2tsos

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table

2-383

dfilt.df2tsos

describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the letters
“frmt” (format). In this use, “frmt” indicates the word length and
fraction length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFrmt, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

DenAccumFrmt AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFrmt CoeffWordLength DenFracLength CoeffAutoScale,
Signed,
Denominator

DenProdFrmt CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

InputFrmt InputWordLength InputFracLength None

NumAccumFrmt AccumWordLength NumAccumFracLength AccumMode,
CastBeforeSum

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,
SignedNumerator

NumProdFrmt CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

OutputFrmt OutputWordLength OutputFracLength OutputMode

2-384

dfilt.df2tsos

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

ScaleValueFrmt CoeffWordLength ScaleValueFracLengthCoeffAutoScale, ,
ScaleValues

StageInputFrmt StageInput-
WordLength

StageInput-
FracLength

StageInput-
AutoScale

StageOutputFrmt StageOutput-
WordLength

StageOutput-
FracLength

StageOutput-
AutoScale

StateFrmt StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label DenProdFrmt, which always follows a
denominator coefficient multiplication element in the signal flow. The
label indicates that denominator coefficients leave the multiplication
element with the word length and fraction length associated with
product operations that include denominator coefficients. From
reviewing the table, you see that the DenProdFrmt refers to the
properties ProdWordLength, ProductMode and DenProdFracLength
that fully define the denominator format after multiply (or product)
operations.

Properties In this table you see the properties associated with second-order section
implementation of transposed direct-form II dfilt objects.

2-385

dfilt.df2tsos

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

AccumMode Determines how the accumulator outputs stored
values. Choose from full precision (FullPrecision), or
whether to keep the most significant bits (KeepMSB) or
least significant bits (KeepLSB) when output results
need shorter word length than the accumulator
supports. To let you set the word length and the
precision (the fraction length) used by the output from
the accumulator, set AccumMode to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the
accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives you the
options double, single, and fixed. In short, this
property defines the operating mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in
the signal flow diagrams) before performing sum
operations.

2-386

dfilt.df2tsos

Property Name Brief Description

CoeffAutoScale Specifies whether the filter automatically chooses the
proper fraction length to represent filter coefficients
without overflowing. Turning this off by setting
the value to false enables you to change the
NumFracLength and DenFracLength properties to
specify the precision used.

CoeffWordLength Specifies the word length to apply to filter coefficients.

DenAccumFracLength Specifies the fraction length used to interpret data
in the accumulator used to hold the results of sum
operations. You can change the value for this property
when you set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to interpret
denominator coefficients. DenFracLength is
always available, but it is read-only until you set
CoeffAutoScale to false.

DenProdFracLength Specifies how the filter algorithm interprets the
results of product operations involving denominator
coefficients. You can change this property value when
you set ProductMode to SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object, including
all of the active elements that perform operations
during filtering — gains, delays, sums, products, and
input/output.

InputFracLength Specifies the fraction length the filter uses to interpret
input data.

InputWordLength Specifies the word length applied to interpret input
data.

NumAccumFracLength Specifies how the filter algorithm interprets the
results of addition operations involving numerator
coefficients. You can change the value of this property
after you set AccumMode to SpecifyPrecision.

2-387

dfilt.df2tsos

Property Name Brief Description

NumFracLength Sets the fraction length used to interpret the value
of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets the results
of product operations involving numerator coefficients.
Available to be changed when you set ProductMode to
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the filter output
data. You can change the value of OutputFracLength
when you set OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered data
for output. You have the following choices:

• AvoidOverflow — directs the filter to set the output
data word length and fraction length to avoid
causing the data to overflow.

• BestPrecision — directs the filter to set the output
data word length and fraction length to maximize
the precision in the output data.

• SpecifyPrecision — lets you set the word and
fraction lengths used by the output data from
filtering.

OutputWordLength Determines the word length used for the output data.

OverflowMode Sets the mode used to respond to overflow conditions
in fixed-point arithmetic. Choose from either saturate
(limit the output to the largest positive or negative
representable value) or wrap (set overflowing values
to the nearest representable value using modular
arithmetic). The choice you make affects only the
accumulator and output arithmetic. Coefficient and
input arithmetic always saturates. Finally, products
never overflow — they maintain full precision.

2-388

dfilt.df2tsos

Property Name Brief Description

ProductMode Determines how the filter handles the output of
product operations. Choose from full precision
(FullPrecision), or whether to keep the most
significant bit (KeepMSB) or least significant bit
(KeepLSB) in the result when you need to shorten the
data words. For you to be able to set the precision (the
fraction length) used by the output from the multiplies,
you set ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for multiplication
operation results. This property becomes writable (you
can change the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and memory
before each filtering operation. Lets you decide
whether your filter retains states from previous
filtering runs. False is the default setting.

2-389

dfilt.df2tsos

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize numeric
values when the values lie between representable
values for the data format (word and fraction lengths).

• convergent — Round up to the next allowable
quantized value.

• ceil — Round to the nearest allowable quantized
value. Numbers that are exactly halfway between
the two nearest allowable quantized values are
rounded up only if the least significant bit (after
rounding) would be set to 1.

• fix — Round negative numbers up and positive
numbers down to the next allowable quantized
value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable quantized
value. Numbers that are halfway between the two
nearest allowable quantized values are rounded up.

The choice you make affects only the accumulator and
output arithmetic. Coefficient and input arithmetic
always round. Finally, products never overflow — they
maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting this
property controls how your filter interprets the scale
values by setting the fraction length. Only available
when you disable AutoScaleMode by setting it to
false.

ScaleValues Scaling for the filter objects in SOS filters.

2-390

dfilt.df2tsos

Property Name Brief Description

Signed Specifies whether the filter uses signed or unsigned
fixed-point coefficients. Only coefficients reflect this
property setting.

SosMatrix Holds the filter coefficients as property values — you
use set and get to modify them. Displays the matrix
in the format [sections x coefficients/section data type].
A [15x6 double] SOS matrix represents a filter with
6 coefficients per section and 15 sections, using data
type double to represent the coefficients.

StageInputFracLength Lets you set the fraction length for stage inputs in SOS
filters, if you set StageInputAutoScale to false.

StageInputWordLength Lets you set the word length for stage inputs in SOS
filters, if you set StageInputAutoScale to false.

StageOutputAutoScale Tells the filter whether to set the stage output
data format to minimize the occurrence of overflow
conditions.

StageOutputFracLength Lets you set the fraction length for stage outputs in
SOS filters, if you set StageOutputAutoScale to off.

StageOutputWordLength Lets you set the word length for stage outputs in SOS
filters, if you set StageOutputAutoScale to false.

StateAutoScale Setting autoscaling for filter states to true reduces the
possibility of overflows occurring during fixed-point
operations. Set to false, StateAutoScale lets the
filter select the fraction length to limit the overflow
potential.

StateFracLength When you set StateAutoScale to false, you enable
the StateFracLength property that lets you set the
fraction length applied to interpret the filter states.

2-391

dfilt.df2tsos

Property Name Brief Description

States This property contains the filter states before, during,
and after filter operations. States act as filter memory
between filtering runs or sessions.

StateWordLength Sets the word length used to represent the filter states.

Examples Construct a second-order section Butterworth filter for fixed-point
filtering. Start by specifying a Butterworth filter, and then convert the
filter to second-order sections, with the following code:

[z,p,k] = butter(30,0.5);
[s,g] = zp2sos(z,p,k);
hd = dfilt.df2tsos(s,g)

hd =

FilterStructure: [1x48 char]
Arithmetic: 'double'
sosMatrix: [15x6 double]

ScaleValues: [16x1 double]
PersistentMemory: false

States: [2x15 double]

Now change the setting of the property Arithmetic to convert the filter
to fixed-point operation.

hd.arithmetic='fixed'

hd =

FilterStructure: [1x48 char]
Arithmetic: 'fixed'
sosMatrix: [15x6 double]

ScaleValues: [16x1 double]
PersistentMemory: false

States: [1x1 embedded.fi]

2-392

dfilt.df2tsos

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

StageInputWordLength: 16
StageInputFracLength: 15

StageOutputWordLength: 16
StageOutputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

StateWordLength: 16
StateAutoScale: true

ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'
AccumWordLength: 40

CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

See Also dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2sos

2-393

dfilt.dfasymfir

Purpose Discrete-time, direct-form antisymmetric FIR filter

Syntax Refer to dfilt.dfasymfir in Signal Processing Toolbox.

Description hd = dfilt.dfasymfir(b) returns a discrete-time, direct-form,
antisymmetric FIR filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.dfasymfir returns a default, discrete-time, direct-form,
antisymmetric FIR filter object hd, with b=1. This filter passes the
input through to the output unchanged.

Note Only the coefficients in the first half of vector b are used because
dfilt.dfasymfir assumes the coefficients in the second half are
antisymmetric to those in the first half. For example, in the figure
coefficients, b(4) = -b(3), b(5) = -b(2), and b(6) = -b(1).

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the odd-order
antisymmetric FIR filter implemented by dfilt.dfasymfir. The
even-order filter uses similar flow. To help you see how the filter
processes the coefficients, input, and states of the filter, as well as
numerical operations, the figure includes the locations of the formatting
objects within the signal flow.

2-394

dfilt.dfasymfir

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the word
“format.” In this use, "format" means the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFormat, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

2-395

dfilt.dfasymfir

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

AccumFormat AccumWordLength AccumFracLength None

InputFormat InputWordLength InputFracLength None

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, ,
Signed, Numerator

OutputFormat OutputWordLength OutputFracLength None

ProductFormat ProductWordLength ProductFracLength None

TapSumFormat InputWordLength InputFracLength InputFormat

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label ProductFormat, which always follows a
coefficient multiplication element in the signal flow. The label indicates
that coefficients leave the multiplication element with the word length
and fraction length associated with product operations that include
coefficients. From reviewing the table, you see that the ProductFormat
refers to the properties ProductFracLength and ProductWordLength
that fully define the coefficient format after multiply (or product)
operations.

Properties In this table you see the properties associated with an antisymmetric
FIR implementation of dfilt objects.

2-396

dfilt.dfasymfir

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits [27]

Specifies the fraction length used to
interpret data output by the accumulator.

AccumWordLength Any integer
number of bits[33]

Sets the word length used to store data in
the accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify
other filter properties to customize your
fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength property value to specify the
precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

2-397

dfilt.dfasymfir

Name Values Description

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically
sets the output word and fraction lengths,
product word and fraction lengths, and
the accumulator word and fraction lengths
to maintain the best precision results
during filtering. The default value,
FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available
so you can set your own word and fraction
lengths for them.

InputFracLength Any positive or
negative integer
number of bits [15]

Specifies the fraction length the filter
uses to interpret input data. Also controls
TapSumFracLength.

InputWordLength Any integer
number of bits
[16]

Specifies the word length applied to
interpret input data. Also determines
TapSumWordLength.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits [29]

Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you set
FilerInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[33]

Determines the word length used for the
output data. You make this property
editable by setting FilterInternals to
SpecifyPrecision.

2-398

dfilt.dfasymfir

Name Values Description

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow
— they maintain full precision.

ProductFracLength Any positive or
negative integer
number of bits [27]

Specifies the fraction length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

ProductWordLength Any integer
number of bits
[33]

Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

2-399

dfilt.dfasymfir

Name Values Description

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are
exactly halfway between the two nearest
allowable quantized values are rounded
up only if the least significant bit (after
rounding) would be set to 1.

• fix — Round negative numbers up
and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next
allowable quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest
allowable quantized values are rounded
up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow
— they maintain full precision.

2-400

dfilt.dfasymfir

Name Values Description

Signed [true], false Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object to
match the filter
arithmetic setting

Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
Notice that the states use fi objects, with
the associated properties from those objects.
For details, refer to fixed-point objects in
Fixed-Point Toolbox documentation or in the
online Help system.

Examples Odd Order

Specify a fifth-order direct-form antisymmetric FIR filter structure for a
dfilt object, hd, with the following code:

b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];

hd = dfilt.dfasymfir(b)

hd =

FilterStructure: 'Direct-Form Antisymmetric FIR'

Arithmetic: 'double'

Numerator: [-0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080]

PersistentMemory: false

set(hd,'arithmetic','fixed')

hd =

FilterStructure: 'Direct-Form Antisymmetric FIR'

Arithmetic: 'fixed'

Numerator: [-0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080]

PersistentMemory: false

2-401

dfilt.dfasymfir

CoeffWordLength: 16

CoeffAutoScale: true

Signed: true

InputWordLength: 16

InputFracLength: 15

FilterInternals: 'FullPrecision'

Now look at the coefficients after converting hd to fixed-point format.

get(hd,'numerator')

ans =
-0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080

Even Order

Specify a fourth-order direct-form antisymmetric FIR filter structure
for dfilt object hd, with the following code:

b = [-0.01 0.1 0.0 -0.1 0.01];
hd = dfilt.dfasymfir(b)

hd =

FilterStructure: 'Direct-Form Antisymmetric FIR'
Arithmetic: 'double'
Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]

PersistentMemory: false

hd.arithmetic='fixed'

hd =

FilterStructure: 'Direct-Form Antisymmetric FIR'
Arithmetic: 'fixed'
Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]

2-402

dfilt.dfasymfir

PersistentMemory: false

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision'

get(hd,'numerator')

ans =

-0.0100 0.1000 0 -0.1000 0.0100

See Also dfilt, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfir

2-403

dfilt.dffir

Purpose Discrete-time direct-form FIR filter

Syntax Refer to dfilt.dffir in Signal Processing Toolbox.

Description hd = dfilt.dffir(b) returns a discrete-time, direct-form finite
impulse response (FIR) filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.dffir returns a default, discrete-time, direct-form FIR
filter object hd, with b=1. This filter passes the input through to the
output unchanged.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the direct-form FIR filter
implemented by dfilt.dffir. To help you see how the filter processes
the coefficients, input, and states of the filter, as well as numerical
operations, the figure includes the locations of the formatting objects
within the signal flow.

2-404

dfilt.dffir

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the letters“frmt”
(format). In this use, “frmt” indicates the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFrmt, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

2-405

dfilt.dffir

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

AccumFrmt AccumWordLength AccumFracLength None

InputFrmt InputWordLength InputFracLength None

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

OutputFrmt OutputWordLength OutputFracLength None

ProductFrmt ProductWordLength ProductFracLength None

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label ProductFrmt, which always follows a
coefficient multiplication element in the signal flow. The label indicates
that coefficients leave the multiplication element with the word length
and fraction length associated with product operations that include
coefficients. From reviewing the table, you see that the ProductFrmt
refers to the properties ProductFracLength and ProductWordLength
that fully define the coefficient format after multiply (or product)
operations.

Properties In this table you see the properties associated with direct-form FIR
implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

2-406

dfilt.dffir

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits
[30]

Specifies the fraction length used to interpret
data output by the accumulator.

AccumWordLength Any integer
number of bits[34]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify other
filter properties to customize your fixed-point
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables
you to change the NumFracLength property
value to specify the precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets
the output word and fraction lengths, product
word and fraction lengths, and the accumulator
word and fraction lengths to maintain the best
precision results during filtering. The default
value, FullPrecision, sets automatic word
and fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so you
can set your own word and fraction lengths for
them.

2-407

dfilt.dffir

Name Values Description

InputFracLength Any positive or
negative integer
number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer
number of bits
[16]

Specifies the word length applied to interpret
input data.

NumFracLength Any positive or
negative integer
number of bits
[14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits
[32]

Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you set
FilerInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[39]

Determines the word length used for the output
data. You make this property editable by setting
FilterInternals to SpecifyPrecision.

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow —
they maintain full precision.

2-408

dfilt.dffir

Name Values Description

ProductFracLength Any positive or
negative integer
number of bits
[30]

Specifies the fraction length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

ProductWordLength Any integer
number of bits
[32]

Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

2-409

dfilt.dffir

Name Values Description

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix — Round negative numbers up and
positive numbers down to the next allowable
quantized value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow —
they maintain full precision.

2-410

dfilt.dffir

Name Values Description

Signed [true], false Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object to
match the filter
arithmetic setting

Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
Notice that the states use fi objects, with
the associated properties from those objects.
For details, refer to fixed-point objects in
Fixed-Point Toolbox documentation or in the
online Help system.

Examples Specify a second-order direct-form FIR filter structure for a dfilt object
hd, with the following code that constructs the filter in double-precision
format and then converts the filter to fixed-point operation:

b = [0.05 0.9 0.05];
hd = dfilt.dffir(b)

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [0.0500 0.9000 0.0500]

PersistentMemory: false

hd.arithmetic='fixed'

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [0.0500 0.9000 0.0500]

2-411

dfilt.dffir

PersistentMemory: false

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision'

hd.filterInternals='specifyPrecision'

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [0.0500 0.9000 0.0500]

PersistentMemory: false

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyPrecision'

OutputWordLength: 34
OutputFracLength: 30

ProductWordLength: 32
ProductFracLength: 30

AccumWordLength: 34
AccumFracLength: 30

2-412

dfilt.dffir

RoundMode: 'convergent'
OverflowMode: 'wrap'

See Also dfilt, dfilt.dfasymfir, dfilt.dffirt, dfilt.dfsymfir

2-413

dfilt.dffirt

Purpose Discrete-time, direct-form FIR transposed filter

Syntax Refer to dfilt.dffirt in Signal Processing Toolbox.

Description hd = dfilt.dffirt(b) returns a discrete-time, direct-form FIR
transposed filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.dffirt returns a default, discrete-time, direct-form FIR
transposed filter object hd, with b = 1. This filter passes the input
through to the output unchanged.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the transposed direct-form
FIR filter implemented by dfilt.dffirt. To help you see how the filter
processes the coefficients, input, and states of the filter, as well as
numerical operations, the figure includes the locations of the formatting
objects within the signal flow.

2-414

dfilt.dffirt

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

2-415

dfilt.dffirt

The labels use a common format — a prefix followed by the word
“format.” In this use, “format” means the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFormat, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

AccumFormat AccumWordLength AccumFracLength None

InputFormat InputWordLength InputFracLength None

NumFormat CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

OutputFormat OutputWordLength OutputFracLength None

ProductFormat ProductWordLength ProductFracLength None

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label ProductFormat, which always follows a
coefficient multiplication element in the signal flow. The label indicates
that coefficients leave the multiplication element with the word length
and fraction length associated with product operations that include
coefficients. From reviewing the table, you see that the ProductFormat
refers to the properties ProductFracLength and ProductWordLength
that fully define the coefficient format after multiply (or product)
operations.

2-416

dfilt.dffirt

Properties In this table you see the properties associated with the transposed
direct-form FIR implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits [30]

Specifies the fraction length used to
interpret data output by the accumulator.

AccumWordLength Any integer number
of bits[34]

Sets the word length used to store data in
the accumulator.

Arithmetic fixed for fixed-point
filters

Setting this to fixed allows you to modify
other filter properties to customize your
fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength property value to specify
the precision used.

2-417

dfilt.dffirt

Name Values Description

CoeffWordLength Any integer number
of bits [16]

Specifies the word length to apply to filter
coefficients.

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically
sets the output word and fraction lengths,
product word and fraction lengths, and
the accumulator word and fraction lengths
to maintain the best precision results
during filtering. The default value,
FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available
so you can set your own word and fraction
lengths for them.

InputFracLength Any positive or
negative integer
number of bits [15]

Specifies the fraction length the filter uses
to interpret input data.

InputWordLength Any integer number
of bits [16]

Specifies the word length applied to
interpret input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret
the numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits [30]

Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you set
FilerInternals to SpecifyPrecision.

OutputWordLength Any integer number
of bits [34]

Determines the word length used for the
output data. You make this property
editable by setting FilterInternals to
SpecifyPrecision.

2-418

dfilt.dffirt

Name Values Description

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic.
Choose from either saturate (limit
the output to the largest positive or
negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular
arithmetic). The choice you make
affects only the accumulator and output
arithmetic. Coefficient and input
arithmetic always saturates. Finally,
products never overflow—they maintain
full precision.

2-419

dfilt.dffirt

Name Values Description

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize
numeric values when the values lie
between representable values for the data
format (word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are
exactly halfway between the two nearest
allowable quantized values are rounded
up only if the least significant bit (after
rounding) would be set to 1.

• fix — Round negative numbers up
and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next
allowable quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest
allowable quantized values are rounded
up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow
— they maintain full precision.

2-420

dfilt.dffirt

Name Values Description

Signed [true], false Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object to match
the filter arithmetic
setting

Contains the filter states before, during,
and after filter operations. States act as
filter memory between filtering runs or
sessions. Notice that the states use fi
objects, with the associated properties
from those objects. For details, refer to
fixed-point objects in Fixed-Point Toolbox
documentation or in the online Help
system.

Examples Specify a second-order direct-form FIR transposed filter structure for a
dfilt object, hd, with the following code:

b = [0.05 0.9 0.05];
hd = dfilt.dffirt(b)

hd =

FilterStructure: 'Direct-Form FIR Transposed'
Arithmetic: 'double'
Numerator: [0.0500 0.9000 0.0500]

PersistentMemory: false

Now use the filter property Arithmetic to change the filter to
fixed-point format.

set(hd,'arithmetic','fixed')
hd

hd =

2-421

dfilt.dffirt

FilterStructure: 'Direct-Form FIR Transposed'
Arithmetic: 'fixed'
Numerator: [0.0500 0.9000 0.0500]

PersistentMemory: false

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision'

hd.filterInternals='specifyPrecision'

hd =

FilterStructure: 'Direct-Form FIR Transposed'
Arithmetic: 'fixed'
Numerator: [0.0500 0.9000 0.0500]

PersistentMemory: false

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyPrecision'

OutputWordLength: 34
OutputFracLength: 30

ProductWordLength: 32
ProductFracLength: 30

2-422

dfilt.dffirt

AccumWordLength: 34
AccumFracLength: 30

RoundMode: 'convergent'
OverflowMode: 'wrap'

See Also dfilt, dfilt.dffir, dfilt.dfasymfir, dfilt.dfsymfir

2-423

dfilt.dfsymfir

Purpose Discrete-time, direct-form symmetric FIR filter

Syntax Refer to dfilt.dfsymfir in Signal Processing Toolbox.

Description hd = dfilt.dfsymfir(b) returns a discrete-time, direct-form
symmetric FIR filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.dfsymfir returns a default, discrete-time, direct-form
symmetric FIR filter object hd, with b=1. This filter passes the input
through to the output unchanged.

Note Only the coefficients in the first half of vector b are used because
dfilt.dfsymfir assumes the coefficients in the second half are
symmetric to those in the first half. In the following figure, for example,
b(3) = 0, b(4) = b(2) and b(5) = b(1).

Fixed-Point
Filter
Structure

In the following figure you see the signal flow diagram for the symmetric
FIR filter that dfilt.dfsymfir implements.

2-424

dfilt.dfsymfir

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the letters“frmt”
(format). In this use, “frmt” indicates the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFrmt label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFrmt, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

2-425

dfilt.dfsymfir

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

AccumFrmt AccumWordLength AccumFracLength None

InputFrmt InputWordLength InputFracLength None

NumFrmt CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

OutputFrmt OutputWordLength OutputFracLength None

ProductFrmt ProductWordLength ProductFracLength None

TapSumFrmt InputWordLength InputFracLength None

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label ProductFrmt, which always follows a
coefficient multiplication element in the signal flow. The label indicates
that coefficients leave the multiplication element with the word length
and fraction length associated with product operations that include
coefficients. From reviewing the table, you see that the ProductFrmt
refers to the properties ProductFracLength and ProductWordLength
that fully define the coefficient format after multiply (or product)
operations.

Properties In this table you see the properties associated with the symmetric FIR
implementation of dfilt objects.

2-426

dfilt.dfsymfir

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits [27]

Specifies the fraction length used to
interpret data output by the accumulator.

AccumWordLength Any integer number
of bits[33]

Sets the word length used to store data in
the accumulator.

Arithmetic fixed for fixed-point
filters

Setting this to fixed allows you to modify
other filter properties to customize your
fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength property value to specify
the precision used.

CoeffWordLength Any integer number
of bits [16]

Specifies the word length to apply to filter
coefficients.

2-427

dfilt.dfsymfir

Name Values Description

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically
sets the output word and fraction lengths,
product word and fraction lengths, and
the accumulator word and fraction lengths
to maintain the best precision results
during filtering. The default value,
FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available
so you can set your own word and fraction
lengths for them.

InputFracLength Any positive or
negative integer
number of bits [15]

Specifies the fraction length the filter uses
to interpret input data.

InputWordLength Any integer number
of bits [16]

Specifies the word length applied to
interpret input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret
the numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits [29]

Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you set
FilerInternals to SpecifyPrecision.

OutputWordLength Any integer number
of bits [33]

Determines the word length used for the
output data. You make this property
editable by setting FilterInternals to
SpecifyPrecision.

2-428

dfilt.dfsymfir

Name Values Description

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic.
Choose from either saturate (limit
the output to the largest positive or
negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular
arithmetic). The choice you make
affects only the accumulator and output
arithmetic. Coefficient and input
arithmetic always saturates. Finally,
products never overflow—they maintain
full precision.

ProductFracLength Any positive or
negative integer
number of bits [29]

Specifies the fraction length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

ProductWordLength Any integer number
of bits [33]

Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

2-429

dfilt.dfsymfir

Name Values Description

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize
numeric values when the values lie
between representable values for the data
format (word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are
exactly halfway between the two nearest
allowable quantized values are rounded
up only if the least significant bit (after
rounding) would be set to 1.

• fix — Round negative numbers up
and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next
allowable quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest
allowable quantized values are rounded
up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow
— they maintain full precision.

2-430

dfilt.dfsymfir

Name Values Description

Signed [true], false Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object to match
the filter arithmetic
setting

Contains the filter states before, during,
and after filter operations. States act as
filter memory between filtering runs or
sessions. Notice that the states use fi
objects, with the associated properties
from those objects. For details, refer to
fixed-point objects in Fixed-Point Toolbox
documentation or in the online Help
system.

Examples Odd Order

Specify a fifth-order direct-form symmetric FIR filter structure for a
dfilt object hd, with the following code:

b = [-0.008 0.06 0.44 0.44 0.06 -0.008];

hd = dfilt.dfsymfir(b)

hd =

FilterStructure: 'Direct-Form Symmetric FIR'

Arithmetic: 'double'

Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]

PersistentMemory: false

set(hd,'arithmetic','fixed')

hd

hd =

FilterStructure: 'Direct-Form Symmetric FIR'

Arithmetic: 'fixed'

2-431

dfilt.dfsymfir

Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]

PersistentMemory: false

CoeffWordLength: 16

CoeffAutoScale: true

Signed: true

InputWordLength: 16

InputFracLength: 15

FilterInternals: 'FullPrecision'

hd.filterinternals='specifyPrecision'

hd =

FilterStructure: 'Direct-Form Symmetric FIR'

Arithmetic: 'fixed'

Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]

PersistentMemory: false

CoeffWordLength: 16

CoeffAutoScale: true

Signed: true

InputWordLength: 16

InputFracLength: 15

FilterInternals: 'SpecifyPrecision'

OutputWordLength: 36

OutputFracLength: 31

ProductWordLength: 33

ProductFracLength: 31

2-432

dfilt.dfsymfir

AccumWordLength: 36

AccumFracLength: 31

RoundMode: 'convergent'

OverflowMode: 'wrap'

To use hd for fixed-point filtering, change the value of the property
Arithmetic to fixed with the following command:

hd.arithmetic = 'fixed'

Even Order

Specify a fourth-order, fixed-point, direct-form symmetric FIR filter
structure for a dfilt object hd, with the following code:

b = [-0.01 0.1 0.8 0.1 -0.01];
hd = dfilt.dfsymfir(b)

hd =

FilterStructure: 'Direct-Form Symmetric FIR'
Arithmetic: 'double'
Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]

PersistentMemory: false

set(hd,'arithmetic','fixed')
hd

hd =

FilterStructure: 'Direct-Form Symmetric FIR'
Arithmetic: 'fixed'
Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]

PersistentMemory: false

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

2-433

dfilt.dfsymfir

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision'

hd.filterinternals='specifyPrecision'

hd =

FilterStructure: 'Direct-Form Symmetric FIR'
Arithmetic: 'fixed'
Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]

PersistentMemory: false

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyPrecision'

OutputWordLength: 36
OutputFracLength: 30

ProductWordLength: 33
ProductFracLength: 30

AccumWordLength: 36
AccumFracLength: 30

RoundMode: 'convergent'
OverflowMode: 'wrap'

See Also dfilt, dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt

2-434

dfilt.latticeallpass

Purpose Discrete-time, lattice allpass filter

Syntax Refer to dfilt.latticeallpass in Signal Processing Toolbox.

Description hd = dfilt.latticeallpass(k) returns a discrete-time, lattice
allpass filter object hd, with lattice coefficients, k.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.latticeallpass returns a default, discrete-time, lattice
allpass filter object hd, with k=[]. This filter passes the input through
to the output unchanged.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the allpass lattice filter
implemented by dfilt.latticeallpass. To help you see how the filter
processes the coefficients, input, and states of the filter, as well as
numerical operations, the figure includes the locations of the formatting
objects within the signal flow.

2-435

dfilt.latticeallpass

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the word
“format.” In this use, “format” means the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFormat, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

2-436

dfilt.latticeallpass

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode

InputFormat InputWordLength InputFracLength None

LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale

OutputFormat OutputWordLength OutputFracLength OutputMode

ProductFormat ProductWordLength ProductFracLength ProductMode

StateFormat StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label ProductFormat, which always follows a
coefficient multiplication element in the signal flow. The label indicates
that coefficients leave the multiplication element with the word length
and fraction length associated with product operations that include
coefficients. From reviewing the table, you see that the ProductFormat
refers to the properties ProductFracLength, ProductWordLength, and
ProductMode that fully define the coefficient format after multiply (or
product) operations.

Properties In this table you see the properties associated with the allpass lattice
implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

2-437

dfilt.latticeallpass

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters and
lattice filters. IIR filters have two similar
properties —DenAccumFracLength and
NumAccumFracLength — that let you set the
precision for numerator and denominator
operations separately.

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant
bits (KeepLSB) when output results need
shorter word length than the accumulator
supports. To let you set the word length and
the precision (the fraction length) used by the
output from the accumulator, set AccumMode
to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the
accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed. In
short, this property defines the operating mode
for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in
the signal flow diagrams) before performing
sum operations.

2-438

dfilt.latticeallpass

Property Name Brief Description

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables
you to change the LatticeFracLength property
value to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering — gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to interpret
input data.

Lattice Any lattice structure coefficients. No default
value.

LatticeFracLength Sets the fraction length applied to the lattice
coefficients.

OutputFracLength Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set OutputMode
to SpecifyPrecision.

2-439

dfilt.latticeallpass

Property Name Brief Description

OutputMode Sets the mode the filter uses to scale the filtered
data for output. You have the following choices:

• AvoidOverflow — directs the filter to set the
output data word length and fraction length
to avoid causing the data to overflow.

• BestPrecision — directs the filter to set the
output data word length and fraction length
to maximize the precision in the output data.

• SpecifyPrecision — lets you set the word
and fraction lengths used by the output data
from filtering.

OutputWordLength Determines the word length used for the output
data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values
to the nearest representable value using
modular arithmetic). The choice you make
affects only the accumulator and output
arithmetic. Coefficient and input arithmetic
always saturates. Finally, products never
overflow—they maintain full precision.

ProductFracLength For the output from a product operation, this
sets the fraction length used to interpret the
data. This property becomes writable (you can
change the value) when you set ProductMode
to SpecifyPrecision.

2-440

dfilt.latticeallpass

Property Name Brief Description

ProductMode Determines how the filter handles the output of
product operations. Choose from full precision
(FullPrecision), or whether to keep the most
significant bit (KeepMSB) or least significant
bit (KeepLSB) in the result when you need to
shorten the data words. For you to be able
to set the precision (the fraction length) used
by the output from the multiplies, you set
ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and
memory before each filtering operation. Lets
you decide whether your filter retains states
from previous filtering runs. False is the
default setting.

2-441

dfilt.latticeallpass

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix — Round negative numbers up and
positive numbers down to the next allowable
quantized value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always round. Finally,
products never overflow — they maintain full
precision.

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

2-442

dfilt.latticeallpass

Property Name Brief Description

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that lets
you set the fraction length applied to interpret
the filter states.

States This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions. Notice that the states use fi objects,
with the associated properties from those
objects. For details, refer to filtstates in
Signal Processing Toolbox documentation or in
the Help system.

StateWordLength Sets the word length used to represent the
filter states.

Examples Specify a third-order lattice allpass filter structure for a dfilt object
hd, with the following code:

k = [.66 .7 .44];
hd=dfilt.latticeallpass(k);

Now convert hd to fixed-point arithmetic form.

hd.arithmetic='fixed'

hd =

FilterStructure: 'Lattice Allpass'
Arithmetic: 'fixed'

Lattice: [0.6600 0.7000 0.4400]
PersistentMemory: false

States: [1x1 embedded.fi]

2-443

dfilt.latticeallpass

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

StateWordLength: 16
StateFracLength: 15

ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'
AccumWordLength: 40

CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

See Also dfilt, dfilt.latticear, dfilt.latticearma, dfilt.latticemamax,
dfilt.latticemamin

2-444

dfilt.latticear

Purpose Discrete-time, lattice, autoregressive filter

Syntax Refer to dfilt.latticear in Signal Processing Toolbox.

Description hd = dfilt.latticear(k) returns a discrete-time, lattice
autoregressive filter object hd, with lattice coefficients, k.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd = dfilt.latticear returns a default, discrete-time, lattice
autoregressive filter object hd, with k=[]. This filter passes the input
through to the output unchanged.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the autoregressive lattice
filter implemented by dfilt.latticear. To help you see how the filter
processes the coefficients, input, and states of the filter, as well as
numerical operations, the figure includes the locations of the formatting
objects within the signal flow.

2-445

dfilt.latticear

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the word
“format.” In this use, “format” means the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFormat, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

2-446

dfilt.latticear

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode

InputFormat InputWordLength InputFracLength None

LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale

OutputFormat OutputWordLength OutputFracLength OutputMode

ProductFormat ProductWordLength ProductFracLength ProductMode

StateFormat StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label ProductFormat, which always follows a
coefficient multiplication element in the signal flow. The label indicates
that coefficients leave the multiplication element with the word length
and fraction length associated with product operations that include
coefficients. From reviewing the table, you see that the ProductFormat
refers to the properties ProductFracLength, ProductWordLength, and
ProductMode that fully define the coefficient format after multiply (or
product) operations.

Properties In this table you see the properties associated with the autoregressive
lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

2-447

dfilt.latticear

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters and
lattice filters. IIR filters have two similar
properties — DenAccumFracLength and
NumAccumFracLength — that let you set the
precision for numerator and denominator
operations separately.

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant
bits (KeepLSB) when output results need
shorter word length than the accumulator
supports. To let you set the word length and
the precision (the fraction length) used by the
output from the accumulator, set AccumMode
to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the
accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed. In
short, this property defines the operating mode
for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in
the signal flow diagrams) before performing
sum operations.

2-448

dfilt.latticear

Property Name Brief Description

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables
you to change the LatticeFracLength to
specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to interpret
input data.

Lattice Any lattice structure coefficients.

LatticeFracLength Sets the fraction length applied to the lattice
coefficients.

OutputFracLength Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set OutputMode
to SpecifyPrecision.

2-449

dfilt.latticear

Property Name Brief Description

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the following
choices:

• AvoidOverflow — directs the filter to set
the output data word length and fraction
length to avoid causing the data to overflow.

• BestPrecision — directs the filter to set the
output data word length and fraction length
to maximize the precision in the output data.

• SpecifyPrecision — lets you set the word
and fraction lengths used by the output data
from filtering.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow —
they maintain full precision.

ProductFracLength For the output from a product operation, this
sets the fraction length used to interpret the
data. This property becomes writable (you can
change the value) when you set ProductMode
to SpecifyPrecision.

2-450

dfilt.latticear

Property Name Brief Description

ProductMode Determines how the filter handles the output of
product operations. Choose from full precision
(FullPrecision), or whether to keep the most
significant bit (KeepMSB) or least significant
bit (KeepLSB) in the result when you need to
shorten the data words. For you to be able
to set the precision (the fraction length) used
by the output from the multiplies, you set
ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and
memory before each filtering operation. Lets
you decide whether your filter retains states
from previous filtering runs. False is the
default setting.

2-451

dfilt.latticear

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix — Round negative numbers up and
positive numbers down to the next allowable
quantized value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always round. Finally,
products never overflow — they maintain full
precision.

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

2-452

dfilt.latticear

Property Name Brief Description

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that lets
you set the fraction length applied to interpret
the filter states.

States This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions. Notice that the states use fi objects,
with the associated properties from those
objects. For details, refer to filtstates in
Signal Processing Toolbox documentation or in
the Help system.

StateWordLength Sets the word length used to represent the
filter states.

Examples Specify a third-order lattice autoregressive filter structure for a dfilt
object, hd, with the following code that creates a fixed-point filter.

k = [.66 .7 .44];
hd1=dfilt.latticear(k)

hd1 =

FilterStructure: 'Lattice Autoregressive (AR)'
Arithmetic: 'double'

Lattice: [0.6600 0.7000 0.4400]
PersistentMemory: false

States: [3x1 double]

hd1.arithmetic='fixed'

hd1 =

2-453

dfilt.latticear

FilterStructure: 'Lattice Autoregressive (AR)'
Arithmetic: 'fixed'

Lattice: [0.6600 0.7000 0.4400]
PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: true

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

StateWordLength: 16
StateFracLength: 15

ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'
AccumWordLength: 40

CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

specifyall(hd1)
hd1

hd1 =

FilterStructure: 'Lattice Autoregressive (AR)'
Arithmetic: 'fixed'

Lattice: [0.6600 0.7000 0.4400]
PersistentMemory: false

2-454

dfilt.latticear

States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: false

LatticeFracLength: 15
Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'SpecifyPrecision'

OutputFracLength: 12

StateWordLength: 16
StateFracLength: 15

ProductMode: 'SpecifyPrecision'
ProductWordLength: 32
ProductFracLength: 30

AccumMode: 'SpecifyPrecision'
AccumWordLength: 40
AccumFracLength: 30

CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

See Also dfilt, dfilt.latticeallpass, dfilt.latticearma,
dfilt.latticemamax, dfilt.latticemamin

2-455

dfilt.latticearma

Purpose Discrete-time, lattice, autoregressive, moving-average filter

Syntax Refer to dfilt.latticearma in Signal Processing Toolbox.

Description hd = dfilt.latticearma(k) returns a discrete-time, lattice
moving-average autoregressive filter object hd, with lattice coefficients,
k.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

hd dfilt.latticearma returns a default, discrete-time, lattice
moving-average, autoregressive filter object hd, with k = []. This filter
passes the input through to the output unchanged.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the autoregressive lattice
filter implemented by dfilt.latticearma. To help you see how the
filter processes the coefficients, input, and states of the filter, as well as
numerical operations, the figure includes the locations of the formatting
objects within the signal flow.

2-456

dfilt.latticearma

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the word
“format.” In this use, “format” means the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFormat, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

2-457

dfilt.latticearma

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property

Related
Properties

InputFormat InputWordLength InputFracLength None

LadderAccumFormat AccumWordLength LadderAccumFracLength AccumMode

LadderFormat CoeffWordLength LadderFracLength CoeffAutoScale

LadderProdFormat ProductWordLength LadderProdFracLength ProductMode

LatticeAccumFormat AccumWordLength LatticeAccum-
FracLength

AccumMode

LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale

LatticeProdFormat ProductWordLength LatticeProdFracLength ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

StateFormat StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label LatticeProdFormat, which always
follows a coefficient multiplication element in the signal flow. The label
indicates that lattice coefficients leave the multiplication element with
the word length and fraction length associated with product operations
that include coefficients. From reviewing the table, you see that
the LatticeProdFormat refers to the properties ProductWordLength,
LatticeProdFracLength, and ProductMode that fully define the
coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the autoregressive
moving-average lattice implementation of dfilt objects.

2-458

dfilt.latticearma

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters and
lattice filters. IIR filters have two similar
properties — DenAccumFracLength and
NumAccumFracLength — that let you set the
precision for numerator and denominator
operations separately.

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than
the accumulator supports. To let you
set the word length and the precision
(the fraction length) used by the output
from the accumulator, set AccumMode to
SpecifyPrecision.

2-459

dfilt.latticearma

Property Name Brief Description

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses.
Gives you the options double, single, and
fixed. In short, this property defines the
operating mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to
the appropriate accumulator format (as
shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
LatticeFracLength property to specify
the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter
object, including all of the active
elements that perform operations during
filtering—gains, delays, sums, products,
and input/output.

InputFracLength Specifies the fraction length the filter uses
to interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

Ladder Stores the ladder coefficients for lattice
ARMA (dfilt.latticearma) filters.

2-460

dfilt.latticearma

Property Name Brief Description

LadderAccumFracLength Sets the fraction length used to interpret
the output from sum operations that
include the ladder coefficients. You can
change this property value after you set
AccumMode to SpecifyPrecision.

LadderFracLength Determines the precision used to represent
the ladder coefficients in ARMA lattice
filters.

Lattice Stores the lattice structure coefficients.

LatticeFracLength Sets the fraction length applied to the
lattice coefficients.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you set
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

• AvoidOverflow — directs the filter to
set the output data word length and
fraction length to avoid causing the data
to overflow.

• BestPrecision — directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

• SpecifyPrecision — lets you set the
word and fraction lengths used by the
output data from filtering.

2-461

dfilt.latticearma

Property Name Brief Description

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic.
Choose from either saturate (limit
the output to the largest positive or
negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular
arithmetic). The choice you make
affects only the accumulator and output
arithmetic. Coefficient and input
arithmetic always saturates. Finally,
products never overflow—they maintain
full precision.

ProductFracLength For the output from a product operation,
this sets the fraction length used to
interpret the data. This property becomes
writable (you can change the value) when
you set ProductMode to SpecifyPrecision.

ProductMode Determines how the filter handles the
output of product operations. Choose
from full precision (FullPrecision), or
whether to keep the most significant bit
(KeepMSB) or least significant bit (KeepLSB)
in the result when you need to shorten
the data words. For you to be able to set
the precision (the fraction length) used by
the output from the multiplies, you set
ProductMode to SpecifyPrecision.

2-462

dfilt.latticearma

Property Name Brief Description

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter
states and memory before each filtering
operation. Lets you decide whether your
filter retains states from previous filtering
runs. False is the default setting.

2-463

dfilt.latticearma

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie
between representable values for the data
format (word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are
exactly halfway between the two nearest
allowable quantized values are rounded
up only if the least significant bit (after
rounding) would be set to 1.

• fix — Round negative numbers up
and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next
allowable quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest
allowable quantized values are rounded
up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow —
they maintain full precision.

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

2-464

dfilt.latticearma

Property Name Brief Description

StateFracLength When you set StateAutoScale to false,
you enable the StateFracLength property
that lets you set the fraction length applied
to interpret the filter states.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between
filtering runs or sessions. Notice that the
states use fi objects, with the associated
properties from those objects. For details,
refer to filtstates in Signal Processing
Toolbox documentation or in the Help
system.

StateWordLength Sets the word length used to represent the
filter states.

See Also dfilt, dfilt.latticeallpass, dfilt.latticear,
dfilt.latticemamin, dfilt.latticemamin

2-465

dfilt.latticemamax

Purpose Discrete-time, lattice, moving-average filter with maximum phase

Syntax Refer to dfilt.latticemamax in Signal Processing Toolbox.

Description hd = dfilt.latticemamax(k) returns a discrete-time, lattice,
moving-average filter object hd, with lattice coefficients k.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

Note When the k coefficients define a maximum phase filter, the
resulting filter in this structure is maximum phase. When your
coefficients do not define a maximum phase filter, placing them in this
structure does not produce a maximum phase filter.

hd = dfilt.latticemamax returns a default discrete-time, lattice,
moving-average filter object hd, with k = []. This filter passes the input
through to the output unchanged.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the maximum phase
implementation of a moving-average lattice filter implemented by
dfilt.latticemamax. To help you see how the filter processes the
coefficients, input, and states of the filter, as well as numerical
operations, the figure includes the locations of the formatting objects
within the signal flow.

2-466

dfilt.latticemamax

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the word
“format.” In this use, “format” means the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFormat, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

2-467

dfilt.latticemamax

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode

InputFormat InputWordLength InputFracLength None

LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale

OutputFormat OutputWordLength OutputFracLength OutputMode

ProductFormat ProductWordLength ProductFracLength ProductMode

StateFormat StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label ProductFormat, which always follows a
coefficient multiplication element in the signal flow. The label indicates
that coefficients leave the multiplication element with the word length
and fraction length associated with product operations that include
coefficients. From reviewing the table, you see that the ProductFormat
refers to the properties ProductFracLength, ProductWordLength, and
ProductMode that fully define the coefficient format after multiply (or
product) operations.

Properties In this table you see the properties associated with the maximum phase,
moving average lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

2-468

dfilt.latticemamax

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters and
lattice filters. IIR filters have two similar
properties — DenAccumFracLength and
NumAccumFracLength — that let you set the
precision for numerator and denominator
operations separately.

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant
bits (KeepLSB) when output results need
shorter word length than the accumulator
supports. To let you set the word length and
the precision (the fraction length) used by the
output from the accumulator, set AccumMode
to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the
accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed. In
short, this property defines the operating mode
for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in
the signal flow diagrams) before performing
sum operations.

2-469

dfilt.latticemamax

Property Name Brief Description

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables
you to change the LatticeFracLength property
to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to interpret
input data.

Lattice Any lattice structure coefficients.

LatticeFracLength Sets the fraction length applied to the lattice
coefficients.

OutputFracLength Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set OutputMode
to SpecifyPrecision.

2-470

dfilt.latticemamax

Property Name Brief Description

OutputMode Sets the mode the filter uses to scale the filtered
data for output. You have the following choices:

• AvoidOverflow — directs the filter to set the
output data word length and fraction length
to avoid causing the data to overflow.

• BestPrecision — directs the filter to set the
output data word length and fraction length
to maximize the precision in the output data.

• SpecifyPrecision — lets you set the word
and fraction lengths used by the output data
from filtering.

OutputWordLength Determines the word length used for the output
data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values
to the nearest representable value using
modular arithmetic). The choice you make
affects only the accumulator and output
arithmetic. Coefficient and input arithmetic
always saturates. Finally, products never
overflow—they maintain full precision.

ProductFracLength For the output from a product operation, this
sets the fraction length used to interpret the
data. This property becomes writable (you can
change the value) when you set ProductMode
to SpecifyPrecision.

2-471

dfilt.latticemamax

Property Name Brief Description

ProductMode Determines how the filter handles the output of
product operations. Choose from full precision
(FullPrecision), or whether to keep the most
significant bit (KeepMSB) or least significant
bit (KeepLSB) in the result when you need to
shorten the data words. For you to be able
to set the precision (the fraction length) used
by the output from the multiplies, you set
ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and
memory before each filtering operation. Lets
you decide whether your filter retains states
from previous filtering runs. False is the
default setting.

2-472

dfilt.latticemamax

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix — Round negative numbers up and
positive numbers down to the next allowable
quantized value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always round. Finally,
products never overflow — they maintain full
precision.

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

2-473

dfilt.latticemamax

Property Name Brief Description

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that lets
you set the fraction length applied to interpret
the filter states.

States This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions. Notice that the states use fi objects,
with the associated properties from those
objects. For details, refer to filtstates in
Signal Processing Toolbox documentation or in
the Help system.

StateWordLength Sets the word length used to represent the
filter states.

Examples Specify a fourth-order lattice, moving-average, maximum phase filter
structure for a dfilt object, hd, with the following code:

k = [.66 .7 .44 .33];
hd = dfilt.latticemamax(k)
hd =

FilterStructure: 'Lattice maximum phase'
Lattice: [1x4 double]

NumberOfSamplesProcessed: 0
ResetStates: 'on'

States: [4x1 double]

See Also dfilt, dfilt.latticeallpass, dfilt.latticear,
dfilt.latticearma, dfilt.latticemamin

2-474

dfilt.latticemamin

Purpose Discrete-time, lattice, moving-average filter with minimum phase

Syntax Refer to dfilt.latticemamin in Signal Processing Toolbox.

Description hd = dfilt.latticemamin(k) returns a discrete-time, lattice,
moving-average, minimum phase, filter object hd, with lattice
coefficients k.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

Note When the k coefficients define a minimum phase filter, the
resulting filter in this structure is minimum phase. When your
coefficients do not define a minimum phase filter, placing them in this
structure does not produce a minimum phase filter.

hd = dfilt.latticemamin returns a default discrete-time, lattice,
moving-average, minimum phase, filter object hd, with k=[]. This filter
passes the input through to the output unchanged.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the minimum phase
implementation of a moving-average lattice filter implemented by
dfilt.latticemamin. To help you see how the filter processes the
coefficients, input, and states of the filter, as well as numerical

2-475

dfilt.latticemamin

operations, the figure includes the locations of the formatting objects
within the signal flow.

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated
with data and functional elements in the filter. The following table
describes each label in the signal flow and relates the label to the filter
properties that are associated with it.

The labels use a common format — a prefix followed by the word
“format.” In this use, “format” means the word length and fraction
length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and
fraction length used to interpret the data input to the filter. The
format properties InputWordLength and InputFracLength (as shown
in the table) store the word length and the fraction length in bits. Or
consider NumFormat, which refers to the word and fraction lengths
(CoeffWordLength, NumFracLength) associated with representing filter
numerator coefficients.

2-476

dfilt.latticemamin

Signal Flow Label

Corresponding
Word Length
Property

Corresponding
Fraction Length
Property Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode

InputFormat InputWordLength InputFracLength None

LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale

OutputFormat OutputWordLength OutputFracLength OutputMode

ProductFormat ProductWordLength ProductFracLength ProductMode

StateFormat StateWordLength StateFracLength States

Most important is the label position in the diagram, which identifies
where the format applies.

As one example, look at the label ProductFormat, which always follows a
coefficient multiplication element in the signal flow. The label indicates
that coefficients leave the multiplication element with the word length
and fraction length associated with product operations that include
coefficients. From reviewing the table, you see that the ProductFormat
refers to the properties ProductFracLength, ProductWordLength, and
ProductMode that fully define the coefficient format after multiply (or
product) operations.

Properties In this table you see the properties associated with the minimum phase,
moving average lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

2-477

dfilt.latticemamin

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters and
lattice filters. IIR filters have two similar
properties — DenAccumFracLength and
NumAccumFracLength — that let you set the
precision for numerator and denominator
operations separately.

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant
bits (KeepLSB) when output results need
shorter word length than the accumulator
supports. To let you set the word length and
the precision (the fraction length) used by the
output from the accumulator, set AccumMode
to SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the
accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed. In
short, this property defines the operating mode
for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in
the signal flow diagrams) before performing
sum operations.

2-478

dfilt.latticemamin

Property Name Brief Description

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables
you to change the LatticeFracLength property
to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering — gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to interpret
input data.

Lattice Any lattice structure coefficients.

LatticeFracLength Sets the fraction length applied to the lattice
coefficients.

OutputFracLength Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set OutputMode
to SpecifyPrecision.

2-479

dfilt.latticemamin

Property Name Brief Description

OutputMode Sets the mode the filter uses to scale the filtered
data for output. You have the following choices:

• AvoidOverflow — directs the filter to set the
output data word length and fraction length
to avoid causing the data to overflow.

• BestPrecision — directs the filter to set the
output data word length and fraction length
to maximize the precision in the output data.

• SpecifyPrecision — lets you set the word
and fraction lengths used by the output data
from filtering.

OutputWordLength Determines the word length used for the output
data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow —
they maintain full precision.

ProductFracLength For the output from a product operation, this
sets the fraction length used to interpret the
data. This property becomes writable (you can
change the value) when you set ProductMode
to SpecifyPrecision.

2-480

dfilt.latticemamin

Property Name Brief Description

ProductMode Determines how the filter handles the output of
product operations. Choose from full precision
(FullPrecision), or whether to keep the most
significant bit (KeepMSB) or least significant
bit (KeepLSB) in the result when you need to
shorten the data words. For you to be able
to set the precision (the fraction length) used
by the output from the multiplies, you set
ProductMode to SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and
memory before each filtering operation. Lets
you decide whether your filter retains states
from previous filtering runs. False is the
default setting.

2-481

dfilt.latticemamin

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix — Round negative numbers up and
positive numbers down to the next allowable
quantized value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always round. Finally,
products never overflow — they maintain full
precision.

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

2-482

dfilt.latticemamin

Property Name Brief Description

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that lets
you set the fraction length applied to interpret
the filter states.

States This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions. Notice that the states use fi objects,
with the associated properties from those
objects. For details, refer to filtstates in
Signal Processing Toolbox documentation or in
the Help system.

StateWordLength Sets the word length used to represent the
filter states.

Examples Specify a third-order lattice, moving-average, minimum phase, filter
structure for a dfilt object, hd, with the following code:

k = [.66 .7 .44];

hd = dfilt.latticemamin(k)

hd =

FilterStructure: 'Lattice Moving-Average (MA) For Minimum

Phase'

Arithmetic: 'double'

Lattice: [0.6600 0.7000 0.4400]

PersistentMemory: false

States: [3x1 double]

set(hd,'arithmetic','fixed')

specifyall(hd)

hd

2-483

dfilt.latticemamin

hd =

FilterStructure: 'Lattice Moving-Average (MA) For Minimum

Phase'

Arithmetic: 'fixed'

Lattice: [0.6600 0.7000 0.4400]

PersistentMemory: false

States: [1x1 embedded.fi]

CoeffWordLength: 16

CoeffAutoScale: false

LatticeFracLength: 15

Signed: true

InputWordLength: 16

InputFracLength: 15

OutputWordLength: 16

OutputMode: 'SpecifyPrecision'

OutputFracLength: 12

StateWordLength: 16

StateFracLength: 15

ProductMode: 'SpecifyPrecision'

ProductWordLength: 32

ProductFracLength: 30

AccumMode: 'SpecifyPrecision'

AccumWordLength: 40

AccumFracLength: 30

CastBeforeSum: true

RoundMode: 'convergent'

OverflowMode: 'wrap'

2-484

dfilt.latticemamin

See Also dfilt, dfilt.latticeallpass, dfilt.latticear,
dfilt.latticearma, dfilt.latticemamax

2-485

dfilt.parallel

Purpose Discrete-time, parallel structure filter

Syntax Refer to dfilt.parallel in Signal Processing Toolbox.

Description hd = dfilt.parallel(hd1,hd2,...) returns a discrete-time filter
object hd, which is a structure of two or more dfilt filter objects, hd1,
hd2, and so on arranged in parallel.

You can also use the standard notation to combine filters into a parallel
structure.

parallel(hd1,hd2,...)

In this syntax, hd1, hd2, and so on can be a mix of dfilt objects, mfilt
objects, and adaptfilt objects.

hd1, hd2, and so on can be fixed-point filters. All filters in the parallel
structure must be the same arithmetic format — double, single, or fixed.
hd, the filter returned, inherits the format of the individual filters.

See Also dfilt, dfilt.cascade, parallel

dfilt.cascade, dfilt.parallel in Signal Processing Toolbox
documentation

2-486

dfilt.scalar

Purpose Discrete-time, scalar filter

Syntax Refer to dfilt.scalar in Signal Processing Toolbox.

Description dfilt.scalar(g) returns a discrete-time, scalar filter object with gain
g, where g is a scalar.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

dfilt.scalar returns a default, discrete-time scalar gain filter object
hd, with gain 1.

Properties In this table you see the properties associated with the scalar
implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

2-487

dfilt.scalar

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed. In
short, this property defines the operating mode
for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in
the signal flow diagrams) before performing sum
operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables
you to change the CoeffFracLength property to
specify the precision used.

CoeffFracLength Set the fraction length the filter uses to
interpret coefficients. CoeffFracLength is
always available, but it is read-only until you set
CoeffAutoScale to false.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that perform
operations during filtering — gains, delays,
sums, products, and input/output.

Gain Returns the gain for the scalar filter. Scalar
filters do not alter the input data except by
adding gain.

2-488

dfilt.scalar

Property Name Brief Description

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to interpret
input data.

OutputFracLength Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set OutputMode to
SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the filtered
data for output. You have the following choices:

• AvoidOverflow — directs the filter to set the
output data word length and fraction length
to avoid causing the data to overflow.

• BestPrecision — directs the filter to set the
output data word length and fraction length
to maximize the precision in the output data.

• SpecifyPrecision — lets you set the word
and fraction lengths used by the output data
from filtering.

OutputWordLength Determines the word length used for the output
data.

2-489

dfilt.scalar

Property Name Brief Description

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable value)
or wrap (set overflowing values to the nearest
representable value using modular arithmetic).
The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always saturates. Finally, products
never overflow — they maintain full precision.

PersistentMemory Specifies whether to reset the filter states and
memory before each filtering operation. Lets you
decide whether your filter retains states from
previous filtering runs. False is the default
setting.

2-490

dfilt.scalar

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent — Round up to the next allowable
quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would be
set to 1.

• fix — Round negative numbers up and
positive numbers down to the next allowable
quantized value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow — they maintain full precision.

2-491

dfilt.scalar

Property Name Brief Description

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States This property contains the filter states before,
during, and after filter operations. States act as
filter memory between filtering runs or sessions.
Notice that the states use fi objects, with the
associated properties from those objects. For
details, refer to filtstates in Signal Processing
Toolbox documentation or in the Help system.

Example Create a direct-form I filter object hd_filt and a scalar object with a
gain of 3 hd_gain and cascade them together.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd_filt = dfilt.df1(b,a)
hd_gain = dfilt.scalar(3)
hd=cascade(hd_gain,hd_filt)
fvtool(hd_filt,hd_gain,hd)
hd_filt =

FilterStructure: 'direct-form I'
Arithmetic: 'double'
Numerator: [0.3000 0.6000 0.3000]

Denominator: [1 0 0.2000]
PersistentMemory: false

States: [4x1 double]

hd_gain =
FilterStructure: 'Scalar'

Arithmetic: 'double'
Gain: 3

PersistentMemory: false

2-492

dfilt.scalar

States: []
hd =

FilterStructure: Cascade
Section(1): Scalar
Section(2): Direct Form I

PersistentMemory: false

To view the sections of the cascaded filter, use

hd.section(1)

ans =
FilterStructure: 'Scalar'

Arithmetic: 'double'

2-493

dfilt.scalar

Gain: 3
PersistentMemory: false

States: []

and

hd.section(2)

ans =
FilterStructure: 'Direct Form I'

Arithmetic: 'double'
Numerator: [0.3000 0.6000 0.3000]

Denominator: [1 0 0.2000]
PersistentMemory: false

States: [4x1 double]

See Also dfilt, dfilt.cascade

2-494

dfilt.wdfallpass

Purpose Wave digital allpass filter

Syntax hd = dfilt.wdfallpass(c)

Description hd = dfilt.wdfallpass(c) constructs an allpass wave digital filter
structure given the allpass coefficients in vector c.

Vector c must have, one, two, or four elements (filter coefficients).
Filters with three coefficients are not supported. When you use c with
four coefficients, the first and third coefficients must be 0.

Given the coefficients in c, the transfer function for the wave digital
allpass filter is defined by

Internally, the allpass coefficients are converted to wave digital filters
for filtering. Note that dfilt.wdfallpass allows only stable filters.
Also note that the leading coefficient in the denominator, a 1, does not
need to be included in vector c.

Use the constructor dfilt.cascadewdfallpass to cascade wdfallpass
filters.

To compare these filters to other similar filters, dfilt.wdfallpass
and dfilt.cascadewdfallpass filters have the same number of
multipliers as the non-wave digital filters dfilt.allpass and
dfilt.cascadeallpass. However, the wave digital filters use fewer
states and they may require more adders in the filter structure.

Wave digital filters are usually used to create other filters. This toolbox
uses them to implement halfband filters, which the first example in
Examples demonstrates. They are most often building blocks for filters.

Properties In the next table, the row entries are the filter properties and a brief
description of each property.

2-495

dfilt.wdfallpass

Property Name Brief Description

AllpassCoefficients Contains the coefficients for the allpass wave
digital filter object

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering — gains,
delays, sums, products, and input/output.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions. They also provide linkage
between the sections of a multisection filter,
such as a cascade filter. For details, refer
to filtstates in Signal Processing Toolbox
documentation or in the Help system.

Filter
Structure

When you change the order of the wave digital filters in the cascade, the
filter structure changes as well.

As shown in this example, realizemdl lets you see the filter structure
used for your filter, if you have Simulink installed.

section11=0.8;
section12=[1.5,0.7];
section13=[1.8,0.9];
hd1=dfilt.cascadewdfallpass(section11,section12,section13);
realizemdl(hd1)

section21=[0.8,0.4];
section22=[0,1.5,0,0.7];

2-496

dfilt.wdfallpass

section23=[0,1.8,0,0.9];
hd2=dfilt.cascadewdfallpass(section21,section22,section23);
realizemdl(hd2)

hd1 has this filter structure with three sections.

2-497

dfilt.wdfallpass

2-498

dfilt.wdfallpass

The filter structure for hd2 is somewhat different, with the different
orders and interconnections between the three sections.

2-499

dfilt.wdfallpass

2-500

dfilt.wdfallpass

Examples Construct a second-order wave digital allpass filter with two coefficients.
Note that to use realizemdl, you must have Simulink.

c = [1.5,0.7];
hd = dfilt.wdfallpass(c);
info(hd)

Discrete-Time IIR Filter (real)

Filter Structure : Wave Digital Filter Allpass
Number of Multipliers : 2
Stable : Yes
Linear Phase : No

Implementation Cost
Number of Multipliers : 2
Number of Adders : 6
Number of States : 2
MultPerInputSample : 2
AddPerInputSample : 6

realizemdl(hd)

With Simulink installed, realizemdl returns this structure for hd.

2-501

dfilt.wdfallpass

See Also dfilt, dfilt.allpass, dfilt.latticeallpass,
dfilt.cascadewdfallpass, dfilt.cascadeallpass, mfilt.iirdecim,
mfilt.iirinterp

2-502

disp

Purpose Filter properties and values

Syntax disp(hd)
disp(ha)
disp(hm)

Description Similar to omitting the closing semicolon from an expression on the
command line, except that disp does not display the variable name.
disp lists the property names and property values for any filter object,
such as a dfilt object or adaptfilt object.

The following examples illustrate the default display for an adaptive
filter ha and a multirate filter hm.

ha=adaptfilt.rls

ha =

Algorithm: 'Direct Form FIR RLS Adaptive Filter'
FilterLength: 10
Coefficients: [0 0 0 0 0 0 0 0 0 0]

States: [9x1 double]
ForgettingFactor: 1

KalmanGain: []
InvCov: [10x10 double]

PersistentMemory: false

disp(ha)
Algorithm: 'Direct-Form FIR RLS Adaptive Filter'

FilterLength: 10
Coefficients: [0 0 0 0 0 0 0 0 0 0]

States: [9x1 double]
ForgettingFactor: 1

KalmanGain: []
InvCov: [10x10 double]

PersistentMemory: false

2-503

disp

hm=mfilt.cicdecim(6)

hm =

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'

DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 6
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

SectionWordLengthMode: 'MinWordLengths'

OutputWordLength: 16

disp(hm)

FilterStructure: 'Cascaded Integrator-Comb
Decimator'

Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 6
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

SectionWordLengthMode: 'MinWordLengths'

OutputWordLength: 16

See Also set

2-504

double

Purpose Cast fixed-point filter to use double-precision arithmetic

Syntax hd = double(h)

Description hd = double(h) returns a new filter hd that has the same structure
and coefficients as h, but whose arithmetic property is set to double
to use double-precision arithmetic for filtering. double(h) is not the
same as the reffilter(h) function:

• hd, the filter returned by double has the quantized coefficients of h
represented in double-precision floating-point format

• The reference filter returned by reffilter has double-precision,
floating-point coefficients that have not been quantized.

You might find double(h) useful to isolate the effects of quantizing the
coefficients of a filter by using double to create a filter hd that operates
in double-precision but uses the quantized filter coefficients.

Examples Use the same filter, once with fixed-point arithmetic and once with
floating-point, to compare fixed-point filtering with double-precision
floating-point filtering.

h = dfilt.dffir(firgr(27,[0 .4 .6 1],...
[1 1 0 0])); % Lowpass filter.
% Set h to use fixed-point arithmetic to filter.
% Quantize the coeffs.
h.arithmetic = 'fixed';
hd = double(h); % Cast h to double-precision

% floating-point coefficients.
n = 0:99; x = sin(0.7*pi*n(:)); % Set up an input signal.
y = filter(h,x); % Fixed-point output.
yd = filter(hd,x); % Floating-point output.
norm(yd-double(y),inf)
ans =

9.2014e-004

2-505

double

norm shows that the largest difference (maximum error) between the
output values from the fixed versus floating filtering comparison is
about 0.0009 — either good or less good depending on your application.

See Also reffilter

2-506

ellip

Purpose Elliptic filter using specification object

Syntax hd = design(d,'ellip')
hd = design(d,'ellip',designoption,value,designoption,...
value,...)

Description hd = design(d,'ellip') designs an elliptical IIR digital filter using
the specifications supplied in the object h.

hd = design(d,'ellip',designoption,value,designoption,...
value,...) returns an elliptical or Cauer FIR filter where you specify
design options as input arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as
shown.

designopts(d,'method')

For complete help about using ellip, refer to the command line help
system. For example, to get specific information about using ellip with
d, the specification object, enter the following at the MATLAB prompt.

help(d,'ellip')

Examples These example demonstrate using ellip to design filters based on filter
specification objects.

Example 1

Construct the default bandpass filter specification object and design
an elliptic filter.

d = fdesign.bandpass;
designopts(d,'ellip')

ans =

FilterStructure: 'df2sos'

2-507

ellip

MatchExactly: 'both'

hd = design(d,'ellip','matchexactly','both');

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [4x6 double]

ScaleValues: [5x1 double]
PersistentMemory: false

Example 2

Construct a lowpass object with order, passband-edge frequency,
stopband-edge frequency, and passband ripple specifications, and then
design an elliptic filter.

d = fdesign.lowpass('n,fp,fst,ap',6,20,25,.8,80);
design(d,'ellip'); % Starts FVtool to display the filter.

2-508

ellip

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Example 3

Construct a lowpass object with filter order, passband edge frequency,
passband ripple, and stopband attenuation specifications, and then
design an elliptic filter.

d = fdesign.lowpass('n,fp,ap,ast',6,20,.8,60,80);
design(d,'ellip'); % Starts FVTool to display the filter.

2-509

ellip

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

See Also butter, cheby1, cheby2

2-510

euclidfactors

Purpose Euclid factors for multirate filter

Syntax [lo,mo] = euclidfactors(hm)

Description [lo,mo] = euclidfactors(hm) returns integer factors lo and mo such
that (lo*L)-(mo*M) = -1. L and M are relatively prime and represent the
interpolation and decimation factors of the multirate filter hm.

euclidfactors works with multirate filters that have both
decimation and interpolation factors, such as mfilt.firfracdecim,
mfilt.firfracinterp, or mfilt.firsrc. You cannot return lo and
mo for decimators or interpolators.

Examples Use an FIR fractional decimator, with L = 5 and M = 7, to show what
euclidfactors does.

hm=mfilt.firfracdecim(5,7)

hm =

FilterStructure: 'Direct-Form FIR Polyphase Fractional Decimator'

Numerator: [1x168 double]

RateChangeFactors: [5 7]

PersistentMemory: false

States: [62x1 double]

[lo,mo]=euclidfactors(hm)

lo =

4

mo =

3

Indeed, (lo*L)-(mo*M) = (4*5)-(3*7) = -1.

2-511

euclidfactors

See Also polyphase, nstates

2-512

equiripple

Purpose Equiripple single-rate or multirate FIR filter from specification object

Syntax hd = design(d,'equiripple')
hd = design(d,'equiripple',designoption,value,designoption,
...value,...)

Description hd = design(d,'equiripple') designs an equiripple FIR digital
filter or multirate filter using the specifications supplied in the object
d. Equiripple filter designs minimize the maximum ripple in the
passbands and stopbands.

hd is either a dfilt object (a single-rate digital filter) or an mfilt object
(a multirate digital filter) depending on the Specification property
of the filter specification object d and the specifications object type —
halfband or interpolator.

When you use equiripple with Nyquist filter specification objects, you
might encounter design cases where the filter design does not converge.
Convergence errors occur mostly at large filter orders, or small
transition widths, or large stopband attenuations. These specifications,
alone or combined, can cause design failures. For more information,
refer to fdesign.nyquist in the online Help system.

hd = design(d,'equiripple',designoption,value,designoption,
...value,...) returns an equiripple FIR filter where you specify
design options as input arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as
shown.

designopts(d,'method')

For complete help about using equiripple, refer to the command line
help system. For example, to get specific information about using
equiripple with d, the specification object, enter the following at the
MATLAB prompt.

help(d,'equiripple')

2-513

equiripple

Examples Here is an example of designing a single-rate equiripple filter from a
halfband filter specification object. Notice the help command used to
learn about the options for the specification object and method.

d = fdesign.halfband(tw,ast,0.1,80);

designmethods(d)

Design Methods for class fdesign.halfband (TW,Ast):

butter

ellip

iirlinphase

equiripple

kaiserwin

help(d,'equiripple')

DESIGN Design an equiripple FIR filter

HD = DESIGN(D, 'equiripple') designs an equiripple filter

specified by the FDESIGN object D.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter

with the structure STRUCTURE. STRUCTURE is 'dffir' by default and

can be any of the following:

'dffir'

'dffirt'

'dfsymfir'

'dfasymfir'

'fftfir'

designopts(d,'equiripple')

ans =

FilterStructure: 'dffir'

MinPhase: 0

2-514

equiripple

StopbandShape: 'flat'

StopbandDecay: 0

hd = design(d,'equiripple','stopbandshape','flat');

fvtool(hd);

Displaying the filter in FVTool shows the equiripple nature of the filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

equiripple also designs multirate filters. This example generates a
halfband interpolator filter.

d = fdesign.interpolator(2); % Interpolation factor = 2.

hd = design(d,'equiripple');

hd

2-515

equiripple

hd =

FilterStructure: 'Direct-Form FIR Polyphase Interpolator'

Arithmetic: 'double'

Numerator: [1x95 double]

InterpolationFactor: 2

PersistentMemory: false

This final example designs an equiripple filter with a direct-form
structure by specifying the filterstructure argument. To set the
design options for the filter, use the designopts method and options
object opts.

d = fdesign.lowpass('fp,fst,ap,ast');
designopts(d,'equiripple')

ans =

FilterStructure: 'dffir'
DensityFactor: 16

MinPhase: 0
MinOrder: 'any'

StopbandShape: 'flat'
StopbandDecay: 0

opts=designopts(d,'equiripple')

opts =

FilterStructure: 'dffir'
DensityFactor: 16

MinPhase: 0
MinOrder: 'any'

StopbandShape: 'flat'
StopbandDecay: 0

2-516

equiripple

opts.FilterStructure='dffirt'

opts =

FilterStructure: 'dffirt'
DensityFactor: 16

MinPhase: 0
MinOrder: 'any'

StopbandShape: 'flat'
StopbandDecay: 0

opts.MinPhase=1;

opts.DensityFactor=20;

opts =

FilterStructure: 'dffirt'
DensityFactor: 20

MinPhase: 1
MinOrder: 'any'

StopbandShape: 'flat'
StopbandDecay: 0

hd=design(d,'equiripple',opts)

hd =

FilterStructure: 'Direct-Form FIR Transposed'
Arithmetic: 'double'
Numerator: [1x37 double]

PersistentMemory: false

See Also fdesign.nyquist, firls, kaiserwin

2-517

farrow

Purpose Farrow filter

Syntax hd = farrow.structure(delay,...)

Note The farrow function has been deprecated, and if possible you
should usedfilt to create Farrow filters instead.

Description hd = farrow.structure(delay,...) returns a Farrow filter hd that
associates delay, the fractional delay, with a filter structure specified
by structure.

Digital fractional delay filters are useful tools for fine-tuning the
sampling instants of signals, such as implementing the required
bandlimited interpolation. They can be found in the synchronization
of digital modems where the delay parameter varies over time, or in
wireless communications systems where the signal delay changes with
location and distance from the transmitter. Farrow filters are one such
fractional delay filter that allows the user to vary the delay.

More information about Farrow filters is available in References.

You can change the fractional delay input value as you filter by
assigning a new value to delay before you filter with hd. Thus
Farrow filters provide delay tunability when your input signals have
time-varying delays.

Provide the fractional delay as a decimal part of an input sample, such
as 0.2. delay must be positive and between 0 and 1.

structure accepts the following strings that describe the filter
structure to use:

structure String Description

fd Generic fractional delay Farrow filter

linearfd Linear fractional delay Farrow filter

2-518

farrow

In the farrow.fd syntax

hd = farrow.fd(delay,...)

you must specify the coefficients as input arguments. Use
fdesign.fracdelay to generate farrow.fd filter design coefficients.
For more information about the coefficients, refer to References.

Farrow filters support numerous functions for analyzing and simulating
the filter, and for generating code from the filter. To learn about the
functions you use with Farrow filters, enter

help farrow/functions

at the Command prompt to see the complete list of functions.

The functions and methods that you use most often with digital filters
are

Function Description

cost Estimate the hardware implementation cost in
terms of mathematical operations like add and
multiply

filter Execute the filter by using it to filter data

fvtool Display and analyze the filter

freqrespest Use filtering to estimate filter frequency response

freqz Compute the instantaneous frequency response of
the filter

realizemdl Generate a Simulink subsystem model of the filter
as a block (Requires Simulink)

Fixed-Point Farrow Filters

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hd as follows:

2-519

farrow

• To change to single-precision filtering, enter

set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to
“Arithmetic”.

Note a(1), the leading denominator coefficient, cannot be 0. To be
able to change the arithmetic setting to fixed or single, a(1) must be
equal to 1.

You cannot use qreport to log the filtering operations of a fixed-point
Farrow filter.

Fixed-Point
Filter
Structure

The following figure shows the signal flow for the fractional delay
Farrow filter implemented by farrow.fd. To help you see how the
filter processes the coefficients, input, output, and states of the filter,
as well as numerical operations, the figure includes the locations of the
arithmetic and data type format elements within the signal flow.

2-520

farrow

Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the preceding signal flow diagram includes
labels associated with data and functional elements in the filter. The
following table describes each label in the signal flow and relates the
label to the filter properties that correspond to it.

The labels use a common format — a descriptor followed by WL or FL.
WL stands for word length and FL for fraction length. The pairing
of WL and FL entries explain the data format at the labeled location
in the filter.

For example, InputWL label refers to the word length and InputFL to
the fraction length used to interpret data you input to the filter. The
corresponding filter properties InputWordLength and InputFracLength
(as shown in the following table) store the word length and the fraction

2-521

farrow

length in bits in the filter object. Or consider CoeffFormat, which refers
to the word and fraction lengths (CoeffWordLength, CoeffFracLength)
associated with representing filter coefficients.

Signal Flow Label Corresponding Filter Property

InputWL InputWordLength

InputFL InputFracLength

FracDelayWL FDWordLength

FracDelayFL FDFracLength

CoeffWL CoeffWordLength

CoeffFL CoeffFracLength

ProductWL ProductWordLength

ProductFL ProductFracLength

AccumWL AccumWordLength

AccumFL AccumFracLength

MultiplicandWL MultiplicandWordLength

MultiplicandFL MultiplicandFracLength

FracDelayProdWL FDProdWordLength

FracDelayProdFL FDProdFracLength

OutputWL OutputWordLength

OutputFL OutputFracLength

Properties In this table you see the properties associated with Farrow filters in
fixed-point form.

2-522

farrow

Note The table lists all the properties that a filter can have. Many of
the properties are dynamic, meaning they exist only in response to the
settings of other properties. You might not see all of the listed properties
all the time. To view all the properties for a filter at any time, use

get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt
object, refer to “Fixed-Point Filter Properties”.

Property Name Brief Description

AccumFracLength Sets the fraction length used to store data
in the accumulator/buffer.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses.
Gives you the options double, single,
and fixed. In short, this property defines
the operating mode for your filter.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting
the value to false enables you to
change the CoeffWordLength and
CoeffFracLength properties to specify
the data format used.

CoeffFracLength Specifies the fraction length to apply to
filter coefficients.

2-523

farrow

Property Name Brief Description

Coefficients Contains the coefficients for the filter.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter
object, including all of the active elements
that perform operations during filtering
— gains, delays, sums, products, and
input/output.

FDAutoScale Specifies whether the filter automatically
chooses the proper scaling to represent
the fractional delay value without
overflowing. Turning this off by setting
the value to false enables you to change
the FDWordLength and FDFracLength
properties to specify the data format
applied.

FDFracLength Specifies the fraction length to represent
the fractional delay.

FDProdFracLength Specifies the fraction length to represent
the result of multiplying the coefficients
with the fractional delay.

FDProdWordLength Specifies the word length to represent
result of multiplying the coefficients with
the fractional delay.

FDWordLength Specifies the word length to represent the
fractional delay.

2-524

farrow

Property Name Brief Description

FilterInternals Controls whether the filter automatically
sets the output word and fraction lengths,
product word and fraction lengths, and
the accumulator word and fraction
lengths to maintain the best precision
results during filtering. The default value,
FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available
so you can set your own word and fraction
lengths for them.

FilterStructure Describes the signal flow for the filter
object, including all of the active elements
that perform operations during filtering
— gains, delays, sums, products, and
input/output.

FracDelay Specifies the fractional delay provided by
the filter, in decimal fractions of a sample.

InputFracLength Specifies the fraction length the filter
uses to interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

MultiplicandFracLength Specifies the fraction length to use
for multiplication operation inputs.
This property becomes writable (you
can change the value) when you set
FilterInternals to SpecifyPrecision.

2-525

farrow

Property Name Brief Description

MultiplicandWordLength Specifies the word length to use
for multiplication operation inputs.
This property becomes writable (you
can change the value) when you set
FilterInternals to SpecifyPrecision.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you set
OutputMode to SpecifyPrecision.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic.
Choose from either saturate (limit
the output to the largest positive or
negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular
arithmetic). The choice you make
affects only the accumulator and output
arithmetic. Coefficient and input
arithmetic always saturates. Finally,
products never overflow — they maintain
full precision.

PersistentMemory Specifies whether to reset the filter
states and memory before each filtering
operation. Lets you decide whether your
filter retains states from previous filtering
runs. False is the default setting.

2-526

farrow

Property Name Brief Description

ProductFracLength Specifies the fraction length to use
for multiplication operation results.
This property becomes writable (you
can change the value) when you set
FilterInternals to SpecifyPrecision.

ProductWordLength Specifies the word length to use
for multiplication operation results.
This property becomes writable (you
can change the value) when you set
FilterInternals to SpecifyPrecision.

2-527

farrow

Property Name Brief Description

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie
between representable values for the data
format (word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are
exactly halfway between the two
nearest allowable quantized values are
rounded up only if the least significant
bit (after rounding) would be set to 1.

• fix — Round negative numbers up
and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next
allowable quantized value.

• round — Round to the nearest
allowable quantized value. Numbers
that are halfway between the two
nearest allowable quantized values are
rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow —
they maintain full precision.

2-528

farrow

Property Name Brief Description

Signed Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between
filtering runs or sessions. Notice that the
states use fi objects, with the associated
properties from those objects. For details,
refer to filtstates in Signal Processing
Toolbox documentation or in the Help
system.

Examples Construct a filter with linear fractional delay of 0.4 samples. Use
linearfd for the structure and set delay equal to 0.4.

delay = 0.4;
hd = farrow.linearfd(delay);
fvtool(hd) % Analyze the filter.

realizemdl produces this model from basic Signal Processing blockset
blocks.

2-529

farrow

References Erup, L., Floyd M. Gardner, and Robert A. Harris, “Interpolation in
Digital Modems-Part II: Implementation and Performance,” IEEE
Transactions on Communications, vol. 41, No. 6, June 1993, pp.
998-1008.

Marvasti, F., Nonuniform Sampling—Theory and Practice, Kluwer
Academic/Plenum Publishers, New York, 2001.

See Also adaptfilt, dfilt, fdesign, mfilt

2-530

fcfwrite

Purpose Write file containing filter coefficients

Syntax fcfwrite(h)
fcfwrite(h,filename)
fcfwrite(...,'fmt')

Description fcfwrite(h) writes a filter coefficient ASCII file to a directory you
choose, or your current MATLAB working directory. h can be a single
filter object or a vector of filter objects. On execution, fcfwrite opens
the Export Filter Coefficients to .FCF File dialog box to let you
assign a file name for the output file. You can choose the destination
directory within this dialog as well.

The default file name is untitled.fcf. When you have Filter Design
Toolbox, you can use fcfwrite(h) to write filter coefficient files for
multirate filters, adaptive filters, and discrete-time filters.

fcfwrite(h,filename) writes the filter coefficients and general
information to a text file called filename in your present MATLAB
working directory and opens the file in the MATLAB editor for you
to review or modify.

If you do not include a file extension in filename, fcfwrite adds the
extension fcf to filename.

fcfwrite(...,'fmt') writes the filter coefficients in the format
specified by the input argument fmt. Valid fmt values are hex for
hexadecimal, dec for decimal, or bin for binary representation of the
filter coefficients.

Examples To demonstrate fcfwrite, create a fixed-point IIR filter at the
command line, and then write the filter coefficients to a file named
iirfilter.fcf.

d=fdesign.lowpass

d =

Response: 'Lowpass'

2-531

fcfwrite

Specification: 'Fp,Fst,Ap,Ast'
Description: {4x1 cell}

NormalizedFrequency: true
Fpass: 0.45
Fstop: 0.55
Apass: 1
Astop: 60

hd=butter(d)

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [13x6 double]

ScaleValues: [14x1 double]
PersistentMemory: false

set(hd,'arithmetic','fixed');

fcfwrite(hd,'iirfilter.fcf');

Here is the output from fcfwrite as it appears in the MATLAB editor.
Not shown here is the filename — iirfilter.fcf as specified and some
comments at the top of the file.

%
%
% Coefficient Format: Decimal
%
% Discrete-Time IIR Filter (real)
% -------------------------------
% Filter Structure : Direct-Form II, Second-Order
% Sections
% Number of Sections : 13
% Stable : Yes
% Linear Phase : No

2-532

fcfwrite

% Arithmetic : fixed
% Numerator : s16,13 -> [-4 4)
% Denominator : s16,14 -> [-2 2)
% Scale Values : s16,14 -> [-2 2)
% Input : s16,15 -> [-1 1)
% Section Input : s16,8 -> [-128 128)
% Section Output : s16,10 -> [-32 32)
% Output : s16,10 -> [-32 32)
% State : s16,15 -> [-1 1)
% Numerator Prod : s32,28 -> [-8 8)
% Denominator Prod : s32,29 -> [-4 4)
% Numerator Accum : s40,28 -> [-2048 2048)
% Denominator Accum : s40,29 -> [-1024 1024)
% Round Mode : convergent
% Overflow Mode : wrap
% Cast Before Sum : true

SOS matrix:
1 2 1 1 -0.22222900390625 0.88262939453125
1 2 1 1 -0.19903564453125 0.68621826171875
1 2 1 1 -0.18060302734375 0.5303955078125
1 2 1 1 -0.1658935546875 0.40570068359375
1 2 1 1 -0.154052734375 0.305419921875
1 2 1 1 -0.14453125 0.22479248046875
1 2 1 1 -0.136962890625 0.16015625
1 2 1 1 -0.13092041015625 0.10906982421875
1 2 1 1 -0.126220703125 0.06939697265625
1 2 1 1 -0.12274169921875 0.0399169921875
1 2 1 1 -0.12030029296875 0.01947021484375
1 2 1 1 -0.118896484375 0.0074462890625
1 1 0 1 -0.0592041015625 0

Scale Values:
0.41510009765625
0.371826171875
0.33746337890625

2-533

fcfwrite

0.3099365234375
0.287841796875
0.27008056640625
0.25579833984375
0.2445068359375
0.23577880859375
0.22930908203125
0.22479248046875
0.22216796875
0.47039794921875
1

To write two or more filters out to one file, provide the filters as a vector
to fcfwrite:

fcfwrite([hd hd1 hd2])

See Also adaptfilt, mfilt

dfilt in Signal Processing Toolbox documentation

2-534

fdatool

Purpose Open Filter Design and Analysis Tool

Syntax fdatool

Description fdatool opens the Filter Design and Analysis Tool (FDATool). Use
this tool to:

• Design filters

• Quantize filters (with Filter Design Toolbox installed)

• Analyze filters

• Modify existing filter designs

• Create multirate filters (with Filter Design Toolbox installed)

• Realize Simulink models of quantized, direct-form, FIR filters (with
Filter Design Toolbox installed)

• Import filters into FDATool

• Perform digital frequency transformations of filters (with Filter
Design Toolbox installed)

Refer to “Using FDATool with Filter Design Toolbox” for more
information about using the analysis, design, and quantization features
of FDATool. For general information about using FDATool, refer to
“FDATool: A Filter Design and Analysis GUI” in Signal Processing
Toolbox documentation.

When you open FDATool and you have Filter Design Toolbox installed,
FDATool incorporates features that are added by Filter Design Toolbox.
With Filter Design Toolbox installed, FDATool lets you design and
analyze quantized filters, as well as convert quantized filters to various
filter structures, transform filters, design multirate filters, and realize
models of filters.

2-535

fdatool

Use the buttons on the sidebar to configure the design area to use
various tools in FDATool.

Set Quantization Parameters — provides access to the properties
of the quantizers that compose a quantized filter. When you click
Set Quantization Parameters, you see FDATool displaying the

2-536

fdatool

quantization options at the bottom of the dialog box (the design area),
as shown in the figure.

Transform Filter — clicking this button opens the Frequency
Transformations pane so you can use digital frequency transformations
to change the magnitude response of your filter.

Create a multirate filter — clicking this button switches FDATool to
multirate filter design mode so you can design interpolators, decimators,
and fractional rate change filters.

Realize Model — starting from your quantized, direct-form, FIR filter,
clicking this button creates a Simulink model of your filter structure in
new model window.

2-537

fdatool

Other options in the menu bar let you convert the filter structure to a
new structure, change the order of second-order sections in a filter, or
change the scaling applied to the filter, among many possibilities.

Remarks By incorporating many advanced filter design methods from Filter
Design Toolbox, FDATool provides more design methods than the
SPTool Filter Designer.

See Also fdatool, fvtool, sptool in Signal Processing Toolbox documentation

2-538

fdesign

Purpose Filter specification object

Syntax d = fdesign.response
d = fdesign.response(spec)
d = fdesign.response(...,fs)
d = fdesign.response(...,magunits)

Description Filter Specification Objects

d = fdesign.response returns a filter specification object d, of filter
response response. To create filters from d, use one of the design
methods listed in “Using Filter Design Methods with Specification
Objects” on page 2-546.

Here is how you design filters using fdesign.

1 Use fdesign.response to construct a filter specification object.

2 Use designmethods to determine which filter design methods work
for your new filter specification object.

3 Use design to apply your filter design method from step 2 to your
filter specification object to construct a filter object.

4 Use FVTool to inspect and analyze your filter object.

Note fdesign does not create filters. fdesign returns a filter
specification object that contains the specifications for a filter, such as
the passband cutoff or attenuation in the stopband. To design a filter
hd from a filter specification object d, use d with a filter design method
such as butter —hd = design(d,'butter').

For more guidance about using fdesign, refer to the examples in
Getting Started with Filter Design Toolbox. Alternatively, type the
following at the MATLAB prompt for more information:

2-539

fdesign

help fdesign

response can be one of the entries in the following table that specify
the filter response desired, such as a bandstop filter or an interpolator.

fdesign Response
String Description

arbmag fdesign.arbmag creates an object to specify
IIR filters that have arbitrary magnitude
responses defined by the input arguments.

arbmagnphase fdesign.arbmagnphase creates an object
to specify IIR filters that have arbitrary
magnitude and phase responses defined by
the input arguments.

bandpass fdesign.bandpass creates an object to specify
bandpass filters.

bandstop fdesign.bandstop creates an object to specify
bandstop filters.

ciccomp fdesign.ciccomp creates an object to specify
filters that compensate for the CIC decimator
or interpolator response curves.

decimator fdesign.decimator creates an object to
specify decimators.

differentiator fdesign.differentiator creates an object to
specify differentiators.

fracdelay fdesign.fracdelay creates an object to
specify fractional delay filters.

halfband fdesign.halfband creates an object to specify
halfband filters.

highpass fdesign.highpass creates an object to specify
highpass filters.

2-540

fdesign

fdesign Response
String Description

hilbert fdesign.hilbert creates an object to specify
Hilbert filters.

interpolator fdesign.interpolator creates an object to
specify interpolators.

isinclp fdesign.isinclp creates an object to specify
lowpass filters that use inverse-sinc form.

lowpass fdesign.lowpass creates an object to specify
lowpass filters.

notch fdesign.notch creates an object to specify
notch filters.

nyquist fdesign.nyquist creates an object to specify
nyquist filters.

octave fdesign.octave creates an object to specify
octave and fractional octave filters.

parameq fdesign.parameq creates an object to specify
parametric equalizer filters.

peak fdesign.peak creates an object to specify
peak filters.

rsrc fdesign.rsrc creates an object to specify
rational-factor sample-rate convertors.

Use the doc fdesign.response syntax at the MATLAB prompt to get
help on a specific structure. Using doc in a syntax like

doc fdesign.lowpass
doc fdesign.bandstop

gets more information about the lowpass or bandstop structure objects.

Each response has a property Specification that defines the
specifications to use to design your filter. You can use defaults or specify

2-541

fdesign

the Specification property when you construct the specifications
object.

With the strings for the Specification property, you provide filter
constraints such as the filter order or the passband attenuation to use
when you construct your filter from the specification object.

Properties fdesign returns a filter specification object. Every filter specification
object has the following properties.

Property Name Default Value Description

Response Depends on the
chosen type

Defines the type of filter
to design, such as an
interpolator or bandpass
filter. This is a read-only
value.

Specification Depends on the
chosen type

Defines the filter
characteristics used to
define the desired filter
performance, such as the
cutoff frequency Fstop or
the filter order N.

2-542

fdesign

Property Name Default Value Description

Description Depends on the
filter type you
choose

Contains descriptions of
the filter specifications
used to define the object,
and the filter specifications
you use when you create a
filter from the object. This
is a read-only value.

NormalizedFrequency Logical true Determines whether the
filter calculation uses
normalized frequency from
0 to 1, or the frequency
band from 0 to Fs/2,
the sampling frequency.
Accepts either true or
false without single
quotation marks.

In addition to these properties, filter specification objects may have
other properties as well, depending on whether they design dfilt
objects or mfilt objects.

Added Properties
for mfilt Objects Description

DecimationFactor Specifies the amount to decrease the sampling
rate. Always a positive integer.

InterpolationFactor Specifies the amount to increase the sampling
rate. Always a positive integer.

PolyphaseLength Polyphase length is the length of each
polyphase subfilter that composes the
decimator or interpolator or rate-change
factor filters. Total filter length is the product
of pl and the rate change factors. pl must be
an even integer.

2-543

fdesign

d = fdesign.response(spec). In spec, you specify the variables to
use that define your filter design, such as the passband frequency or the
stopband attenuation. These variables are applied to the filter design
method you choose to design your filter.

For example, when you create a default lowpass filter specification
object d, fdesign sets the passband frequency Fpass, the stopband
frequency Fstop, the stopband attenuation Astop, and the passband
attenuation Apass (ripple in the passband) for d:

d = fdesign.lowpass

d =

Response: 'Lowpass'
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

Fpass: 0.45
Fstop: 0.55
Apass: 1
Astop: 60

However, lowpass design syntax accepts any one of the following Spec
strings (among others) to define the filter response:

Spec String Description

Fp,Fst,Ap,Ast Define the filter by specifying the passband
cutoff, the stopband cutoff, the ripple in the
passband, and the attenuation in the stopband.
This is the default string for a lowpass filter.

N,Fc Set the filter order and the cutoff frequency to
define the filter.

N,Fp,Ap Set the filter order, passband cutoff frequency,
and passband ripple.

2-544

fdesign

Spec String Description

N,Fst,Ast Define the filter by setting the order, stopband
frequency, and stopband attenuation.

N,Fp,Ap,Ast Set the order, passband cutoff frequency,
passband ripple, and stopband attenuation.

N,Fp,Fst,Ap Set the filter order, passband cutoff frequency,
stopband frequency, and passband ripple.

Other filter object types, such as Nyquist or highpass, accept a different
set of strings for Spec. Refer to the Help system for details about the
strings for each filter type.

One important note is that the Spec string you choose controls which
design method works for the specifications object.

For the lowpass filter specification object d from earlier, you can use
butter, cheby1, cheby2, or ellip (to name a few) to design a filter.
However, if the Spec string had been 'n,fp,fst,ap', you could only
use the ellip design method to design your filter.

When you implement this lowpass filter hd using a filter design method
such as Butterworth (the butter design function), the constraints in fp,
fst, ap, and ast (the default string and filter specification) define the
response of the final minimum-order lowpass filter:

hd = design(d,'butter')

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'double'

sosMatrix: [13x6 double]

ScaleValues: [14x1 double]

PersistentMemory: false

FVTool shows that hd is a lowpass filter that meets the design
specification.

2-545

fdesign

d = fdesign.response(...,fs) adds the argument fs, specified in Hz
to define the sampling frequency to use. In this case, all frequencies in
the specifications are in Hz as well.

d = fdesign.response(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of

• linear — specify the magnitude in linear units

• dB — specify the magnitude in decibels

• squared — specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Using Filter Design Methods with Specification Objects

After you create a filter specification object, you use a filter design
method to implement your filter with a selected algorithm. The
following methods are available for filter specification objects, but all
methods do not apply to all object types. Also, the specification string
you use to define the object changes the algorithms available to design
a filter. Enter doc butter, for example, to get more information about
using the Butterworth design method with your filter specification
object.

Design Function Description

butter Implement a Butterworth filter resulting in an
SOS filter with direct-form II structure

cheby1 Implement a Chebyshev Type I filter, resulting
in a direct-form II second-order filter

cheby2 Implement a Chebyshev Type II filter, resulting
in an SOS filter with direct-form II structure

2-546

fdesign

Design Function Description

ellip Implement an elliptic filter resulting in an SOS
filter with direct-form II structure

equiripple Implement an equiripple filter

firls Implement a least-squares filter

kaiserwin Implement a filter that uses a Kaiser window

lagrange Implement a Lagrange fractional delay filter

multistage Implement a multistage filter

When you use any of the design methods without providing an output
argument, the resulting filter design appears in FVTool by default.

Along with filter design methods, fdesign works with supporting
methods that help you create filter specification objects or determine
which design methods work for a given specifications object.

Supporting
Function Description

setspecs Set all of the specifications simultaneously.

designmethods Return the design methods.

designopts Return the input arguments and default values
that apply to a specifications object and method

You can set filter specification values by passing them after the
Specification argument, or by passing the values without the
Specification string.

Filter object constructors take the input arguments in the same
order as setspecs and the order in the strings for Specification.
Enter doc setspecs at the prompt for more information about using
setspecs.

When the first input to fdesign is not a valid Specification string
like ’n,fc’, fdesign assumes that the input argument is a filter

2-547

fdesign

specification and applies it using the default Specification string
—fp,fst,ap,ast for a lowpass object, for example.

Examples These examples show a few default filter objects constructed from the
MATLAB command prompt, and how to design a Butterworth filter.

Example 1

Halfband filter specification object with filter order and stopband
attenuation provided as input arguments. Add the linear magunits
option so you specify the attenuation in decimal — 0.0001.

n = 80;
ast = 1e-4;
fs = 48000
d=fdesign.halfband('n,ast',n,ast,fs,'linear')
object.

d =

Response: [1x51 char]
Specification: 'N,Ast'

Description: {2x1 cell}
NormalizedFrequency: false

Fs: 48000
FilterOrder: 80

Astop: 80

d.description

ans =

'Filter Order'
'Stopband Attenuation (dB)'

Example 2

Interpolator filter specification object

2-548

fdesign

d = fdesign.interpolator % Specifications object.

d =

Response: 'Minimum-order halfband'
Specification: 'TW,Ast'

Description: {2x1 cell}
InterpolationFactor: 2
NormalizedFrequency: true

Fs: 'Normalized'
TransitionWidth: 0.1000

Astop: 80

d.Description

ans =

'Transition Width'
'Stopband Attenuation (dB)'

Example 3

Highpass filter specification object

d=fdesign.highpass % Creates specifications object.

d =

Response: 'Minimum-order highpass'
Specification : 'Fst,Fp,Ast,Ap'

Description: {4x1 cell}
NormalizedFrequency: true

Fs: 'Normalized'
Fstop: 0.4500
Fpass: 0.5500
Astop: 60
Apass: 1

2-549

fdesign

d.Description

ans =

'Stopband Frequency'
'Passband Frequency'
'Stopband Attenuation (dB)'
'Passband Ripple (dB)'

Notice the correspondence between the properties Specification and
Description — in Description you see in words the definitions of the
variables shown in Specification.

Example 4

Notice that only the Kaiser window-based design method applies to
default Nyquist filter objects.

Lowpass Butterworth filter specification object

Use a filter specification object to construct a lowpass Butterworth filter
with default Specification fp,fst,ap,ast — the edge frequencies of
the passband and stopband, the attenuation in the passband, and the
attenuation in the stopband. Start by creating the specifications object
d and providing the filter order and cutoff frequency values.

d = fdesign.lowpass(0.4,0.5,1,80);
d

d =

Response: 'Minimum-order lowpass'
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

Fs: 'Normalized'
Fpass: 0.4000
Fstop: 0.5000

2-550

fdesign

Apass: 1
Astop: 80

Determine which design methods apply to d.

designmethods(d)

Design Methods for class fdesign.lowpass:

butter
cheby1
cheby2
ellip

Now use d and the butter design method to design a Butterworth filter.

hd = design(d,'butter','matchexactly','passband');
fvtool(hd);

The resulting filter magnitude response shown by FVTool appears in
the following figure.

2-551

fdesign

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−800

−700

−600

−500

−400

−300

−200

−100

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

If you had a default Nyquist filter specification object d

d = fdesign.nyquist

you could find out which design methods apply to d by entering

designmethods(d)

Design methods for class fdesign.nyquist:

kaiserwin

2-552

fdesign

See Also butter, cheby1, cheby2, designmethods, designopts, ellip,
equiripple, fdatool, fdesign.bandpass, fdesign.bandstop,
fdesign.decimator, fdesign.halfband, fdesign.highpass,
fdesign.interpolator, fdesign.lowpass, fdesign.nyquist,
fdesign.rsrc, firls, fvtool, kaiserwin, lagrange, multistage,
setspecs, validstructures

2-553

fdesign.arbmag

Purpose Arbitrary response magnitude filter specification object

Syntax d = fdesign.arbmag
d = fdesign.arbmag(specification)
d = fdesign.arbmag(specification,specvalue1,specvalue2,...)
d = fdesign.arbmag(specvalue1,specvalue2,specvalue3)
d = fdesign.arbmag(...,fs)

Description d = fdesign.arbmag constructs an arbitrary magnitude filter designer
d.

d = fdesign.arbmag(specification) initializes the Specification
property for specifications object d to the string in specification. The
input argument specification must be one of the strings shown in the
following table. Specification strings are not case sensitive.

Specification
String Description of Resulting Filter

n,f,a Single band design (default). FIR and IIR (n is the
order for both numerator and denominator).

n,b,f,a Multiband design where b defines the number of
bands.

nb,na,f,a IIR single band design.

nb,na,b,f,a IIR multiband design where b defines the number
of bands

2-554

fdesign.arbmag

The following table describes the arguments in the specification
strings.

Argument Description

a Amplitude vector. Values in a define the filter
amplitude at frequency points you specify in f, the
frequency vector. If you use a, you must use f as
well. Amplitude values must be real. For complex
values designs, use fdesign.arbmagnphase.

b Number of bands in the multiband filter.

f Frequency vector. Frequency values in specified in f
indicate locations where you provide specific filter
response amplitudes. When you provide f you must
also provide a.

n Filter order for FIR filters and the numerator and
denominator orders for IIR filters.

nb Numerator order for IIR filters.

na Denominator order for IIR filter designs.

By default, this method assumes that all frequency specifications are
supplied in normalized frequency.

Specifying f and a

f and a are the input arguments you use to define the filter
response desired. Each frequency value you specify in f must have a
corresponding response value in a. The following example creates a
filter with two passbands (b = 4) and shows how f and a are related.
This example is for illustration only. It is not an actual filter.

Define the frequency vector f as [0 0.1 0.2 0.4 0.5 0.6 0.9 1.0]

Define the response vector a as [0 0.5 0.5 0.1 0.1 0.8 0.8 0]

These specifications connect f and a as shown in the following table.

2-555

fdesign.arbmag

f (Normalized
Frequency) a (Response Desired at f)

0 0

0.1 0.5

0.2 0.5

0.4 0.1

0.5 0.1

0.6 0.8

0.9 0.8

1.0 0.0

A response with two passband—one roughly between 0.1 and 0.2 and
the second between 0.6 and 0.9—results from the mapping between f
and a. A filter that used f and a might look like the one shown in the
following figure.

2-556

fdesign.arbmag

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−18

−16

−14

−12

−10

−8

−6

−4

−2

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Different specification types often have different design methods
available. Use designmethods(d) to get a list of design methods
available for a given specification string and specifications object.

d = fdesign.arbmag(specification,specvalue1,specvalue2,...)
initializes the filter specification object specifications with specvalue1,
specvalue2, and so on. Use get(d,'description') for descriptions of
the various specifications specvalue1, specvalue2, ... specn.

d = fdesign.arbmag(specvalue1,specvalue2,specvalue3) uses
the default specification string n,f,a, setting the filter order, filter
frequency vector, and the amplitude vector to the values specvalue1,
specvalue2, and specvalue3.

d = fdesign.arbmag(...,fs) specifies the sampling frequency in Hz.
All other frequency specifications are also assumed to be in Hz when
you specify fs.

2-557

fdesign.arbmag

Examples These three examples introduce designing filters that have arbitrary
filter response shapes. In this first example, use fdesign.arbmag
to design a single-band, arbitrary-magnitude FIR filter. The design
process uses the default design method for the n,f,a specification, as
shown in the following code:

n = 120;

f = linspace(0,1,100); % 100 frequency points.

as = ones(1,100)-f*0.2;

absorb = [ones(1,30),(1-0.6*bohmanwin(10))',...

ones(1,5), (1-0.5*bohmanwin(8))',ones(1,47)];

a = as.*absorb; % Optical absorption of atomic Rubidium 87 vapor.

d = fdesign.arbmag(n,f,a);

hd1 = design(d,'freqsamp');

Next, design a single-band, arbitrary-magnitude IIR filter and display
the magnitude response in FVTool. Use f and a from the previous
example as input arguments for this case. Display the response from
the previous example in FVTool as well, because the FIR and IIR filters
are similar.

To demonstrate that the same specification generates both FIR and
IIR filters, use the same specifications object d, but change the design
method to iirlpnorm.

d.filterorder=10

d =

Response: 'Arbitrary Magnitude'

Specification: 'N,F,A'

Description: {'Filter Order';'Frequency Vector';'

Amplitude Vector'}

NormalizedFrequency: true

FilterOrder: 10

Frequencies: [1x100 double]

Amplitudes: [1x100 double]

2-558

fdesign.arbmag

hd2=design(d,'iirlpnorm') % Design an IIR filter from the same object.

hd2 =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'double'

sosMatrix: [5x6 double]

ScaleValues: [0.85714867585342;1;1;1;1;1]

PersistentMemory: false

fvtool(hd1,hd2)

FVTool returns the following plot for the filters.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−2.5

−2

−1.5

−1

−0.5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

FIR Filter hd1

IIR Filter hd2

2-559

fdesign.arbmag

For the third example, design a multiband filter for noise shaping when
you are simulating the Rayleigh fading phenomenon in a wireless
communications channel. This example uses the default design method
for fdesign.arbmag specifications objects with the nb,na,nbands
specification—iirlpnorm.

nb = 4; % Numerator order.
na = 6; % Denominator order.
nbands = 2; % Number of filter bands.
f1 = 0:0.01:0.4; % Frequency vector values.
a1 = 1.0 ./ (1 - (f1./0.42).^2).^0.25; % Amplitude values.
f2 = [.45 1];
a2 = [0 0];
d = fdesign.arbmag('nb,na,b,f,a',nb,na,nbands,f1,a1,f2,a2);
design(d); % Starts FVTool to display the filter response.

2-560

fdesign.arbmag

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

The filter response shows the characteristic shape for noise
shaping—increasing gain with increasing frequency in the passband,
and a narrow transition region.

See Also design, designopts, fdesign, setspecs

2-561

fdesign.arbmagnphase

Purpose Arbitrary response magnitude and phase filter specification object

Syntax d = fdesign.arbmagnphase
d = fdesign.arbmagnphase(specification)
d = fdesign.arbmagnphase(specification,specvalue1,specvalue2,

...)
d = fdesign.arbmagnphase(specvalue1,specvalue2,specvalue3)
d = fdesign.arbmagnphase(...,fs)

Description d = fdesign.arbmagnphase constructs an arbitrary magnitude filter
specification object d.

d = fdesign.arbmagnphase(specification) initializes the
Specification property for specifications object d to the string in
specification. The input argument specification must be one of
the strings shown in the following table. Specification strings are not
case sensitive.

Specification
String Description of Resulting Filter

n,f,h Single band design (default). FIR and IIR (n is the
order for both numerator and denominator).

n,b,f,h FIR multiband design where b defines the number
of bands.

nb,na,f,h IIR single band design.

The following table describes the arguments in the strings.

Argument Description

b Number of bands in the multiband filter.

f Frequency vector. Frequency values specified in f
indicate locations where you provide specific filter
response amplitudes. When you provide f you must
also provide h which contains the response values.

2-562

fdesign.arbmagnphase

Argument Description

h Complex frequency response values.

n Filter order for FIR filters and the numerator
and denominator orders for IIR filters (when not
specified by nb and na).

nb Numerator order for IIR filters.

na Denominator order for IIR filter designs.

By default, this method assumes that all frequency specifications are
supplied in normalized frequency.

Specifying f and h

f and h are the input arguments you use to define the filter
response desired. Each frequency value you specify in f must have a
corresponding response value in h. This example creates a filter with
two passbands (b = 4) and shows how f and h are related. This example
is for illustration only. It is not an actual filter.

Define the frequency vector f as [0 0.1 0.2 0.4 0.5 0.6 0.9 1.0]

Define the response vector h as [0 0.5 0.5 0.1 0.1 0.8 0.8 0]

These specifications connectf and h as shown in the following table.

f (Normalized
Frequency) h (Response Desired at f)

0 0

0.1 0.5

0.2 0.5

0.4 0.1

0.5 0.1

0.6 0.8

2-563

fdesign.arbmagnphase

f (Normalized
Frequency) h (Response Desired at f)

0.9 0.8

1.0 0.0

A response with two passbands—one roughly between 0.1 and 0.2 and
the second between 0.6 and 0.9—results from the mapping between f
and h. Plotting f and h yields the following figure that resembles a
filter with two passbands.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (normalized)

R
es

po
ns

e

The second example in Examples shows this plot in more detail with
a complex filter response for h. In the example, h uses complex values
for the response.

2-564

fdesign.arbmagnphase

Different specification types often have different design methods
available. Use designmethods(d) to get a list of design methods
available for a given specification string and specifications object.

d =
fdesign.arbmagnphase(specification,specvalue1,specvalue2,...)
initializes the filter specification object with specvalue1, specvalue2,
and so on. Use get(d,'description') for descriptions of the various
specifications specvalue1, specvalue2, ...specn.

d = fdesign.arbmagnphase(specvalue1,specvalue2,specvalue3)
uses the default specification string n,f,h, setting the filter order, filter
frequency vector, and the complex frequency response vector to the
values specvalue1, specvalue2, and specvalue3.

d = fdesign.arbmagnphase(...,fs) specifies the sampling frequency
in Hz. All other frequency specifications are also assumed to be in Hz
when you specify fs.

Examples Use fdesign.arbmagnphase to model a complex analog filter:

d=fdesign.arbmagnphase('n,f,h',100); % N=100, f and h set to defaults.

design(d,'freqsamp');

For a more complex example, design a bandpass filter with low group
delay by specifying the desired delay and using f and h to define the
filter bands.

n = 50; % Group delay of a linear phase filter would be 25.

gd = 12; % Set the desired group delay for the filter.

f1=linspace(0,.25,30); % Define the first stopband frequencies.

f2=linspace(.3,.56,40);% Define the passband frequencies.

f3=linspace(.62,1,30); % Define the second stopband frequencies.

h1 = zeros(size(f1)); % Specify the filter response at the freqs in f1.

h2 = exp(-j*pi*gd*f2); % Specify the filter response at the freqs in f2.

h3 = zeros(size(f3)); % Specify the response at the freqs in f3.

d=fdesign.arbmagnphase('n,b,f,h',50,3,f1,h1,f2,h2,f3,h3);

design(d,'equiripple')

2-565

fdesign.arbmagnphase

In the following figure, displaying the filter in FVTool shows both the
magnitude response and the nearly linear phase.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−32.4876

−25.5628

−18.638

−11.7132

−4.7884

2.1364

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

−52.9319

−41.8414

−30.7509

−19.6604

−8.5699

2.5206

P
ha

se
 (

ra
di

an
s)

Filter Magnitude Response
Filter Phase Response

See Also fdesign, design, designmethods, setspecs

2-566

fdesign.bandpass

Purpose Bandpass filter specification object

Syntax d = fdesign.bandpass
d = fdesign.bandpass(spec)
d = fdesign.bandpass(spec,specvalue1,specvalue2,...)
d = fdesign.bandpass(specvalue1,specvalue2,specvalue3,
specvalue4,...specvalue4,specvalue5,specvalue6)
d = fdesign.bandpass(...,fs)
d = fdesign.bandpass(...,magunits)

Description d = fdesign.bandpass constructs a bandpass filter specification object
d, applying default values for the properties Fstop1, Fpass1, Fpass2,
Fstop2, Astop1, Apass, and Astop2 — one possible set of values you use
to specify a bandpass filter.

Using fdesign.bandpass with a design method generates a dfilt
object.

d = fdesign.bandpass(spec) constructs object d and sets its
Specification property to spec. Entries in the spec string represent
various filter response features, such as the filter order, that govern the
filter design. Valid entries for spec are shown below and used to define
the bandpass filter. The strings are not case sensitive.

• fst1,fp1,fp2,fst2,ast1,ap,ast2 (default spec)

• n,f3dB1,f3dB2

• n,f3dB1,f3dB2,ap

• n,f3dB1,f3dB2,ast

• n,f3dB1,f3dB2,ast1,ap,ast2

• n,f3dB1,f3dB2,bwp

• n,f3dB1,f3dB2,bwst

• n,fc1,fc2

• n,fp1,fp2,ap

2-567

fdesign.bandpass

• n,fp1,fp2,ast1,ap,ast2

• n,fst1,fp1,fp2,fst2

• n,fst1,fp1,fp2,fst2,ap

• n,fst1,fst2,ast

• nb,na,fst1,fp1,fp2,fst2

The string entries are defined as follows:

• ap — amount of ripple allowed in the pass band. Also called Apass.

• ast1 — attenuation in the first stop band in decibels (the default
units). Also called Astop1.

• ast2 — attenuation in the second stop band in decibels (the default
units). Also called Astop2.

• bwp — bandwidth of the filter passband. Specified in normalized
frequency units.

• bwst — bandwidth of the filter stopband. Specified in normalized
frequency units.

• f3dB1 — cutoff frequency for the point 3 dB point below the passband
value for the first cutoff. Specified in normalized frequency units.
(IIR filters)

• f3dB2 — cutoff frequency for the point 3 dB point below the passband
value for the second cutoff. Specified in normalized frequency units.
(IIR filters)

• fc1 — cutoff frequency for the point 3 dB point below the passband
value for the first cutoff. Specified in normalized frequency units.
(FIR filters)

• fc2 — cutoff frequency for the point 3 dB point below the passband
value for the second cutoff. Specified in normalized frequency units.
(FIR filters)

2-568

fdesign.bandpass

• fp1 — frequency at the edge of the start of the pass band. Specified
in normalized frequency units. Also called Fpass1.

• fp2 — frequency at the edge of the end of the pass band. Specified in
normalized frequency units. Also called Fpass2.

• fst1 — frequency at the edge of the start of the first stop band.
Specified in normalized frequency units. Also called Fstop1.

• fst2 — frequency at the edge of the start of the second stop band.
Specified in normalized frequency units. Also called Fstop2.

• n — filter order for FIR filters. Or both the numerator and
denominator orders for IIR filters when na and nb are not provided.

• na — denominator order for IIR filters

• nb — numerator order for IIR filters

Graphically, the filter specifications look similar to those shown in the
following figure.

Regions between specification values like fst1 and fp1 are transition
regions where the filter response is not explicitly defined.

The filter design methods that apply to a bandpass filter specification
object change depending on the Specification string. Use
designmethods to determine which design method applies to an object
and its specification string.

2-569

fdesign.bandpass

d = fdesign.bandpass(spec,specvalue1,specvalue2,...)
constructs an object d and sets its specifications at construction time.

d = fdesign.bandpass(specvalue1,specvalue2,specvalue3,
specvalue4,...specvalue4,specvalue5,specvalue6) constructs d,
an object with the default Specification property string,
using the values you provide as input arguments for
specvalue1,specvalue2,specvalue3,specvalue4,specvalue4,specvalue5,
specvalue6 and specvalue7.

d = fdesign.bandpass(...,fs) adds the argument fs, specified in Hz
to define the sampling frequency to use. In this case, all frequencies in
the specifications are in Hz as well.

d = fdesign.bandpass(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of

• linear — specify the magnitude in linear units

• dB — specify the magnitude in dB (decibels)

• squared — specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples These examples show how to construct a bandpass filter specification
object. First, create a default specifications object without using input
arguments.

d = fdesign.bandpass
d =

Response: 'Minimum-order bandpass'
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'

Description: {7x1 cell}

2-570

fdesign.bandpass

NormalizedFrequency: true
Fstop1: 0.3500
Fpass1: 0.4500
Fpass2: 0.5500
Fstop2: 0.6500
Astop1: 60
Apass: 1

Astop2: 60

Now, pass the filter specifications that correspond to the default
Specification — fst1,fp1,fp2,fst2,ast1,ap,ast2 — without
specifying the Specification string. This example adds fs as the final
input argument to specify the sampling frequency of 48 Hz.

d = fdesign.bandpass(10, 12, 14, 16, 80, .5, 60, 48)
d =

Response: 'Minimum-order bandpass'
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'

Description: {7x1 cell}
NormalizedFrequency: false

Fs: 48
Fstop1: 10
Fpass1: 12
Fpass2: 14
Fstop2: 16
Astop1: 80
Apass: 0.5000

Astop2: 60

Next create a specifications object by passing a specification type string
’n,fc1,fc2’ — the resulting object uses default values for n, fc1, and
fc2.

d = fdesign.bandpass('n,fc1,fc2')
d =

Response: 'Bandpass with cutoff'

2-571

fdesign.bandpass

Specification: 'N,Fc1,Fc2'
Description: {3x1 cell}

NormalizedFrequency: true
FilterOrder: 10

Fcutoff1: 0.4000
Fcutoff2: 0.6000

Create the same filter, passing the specification values to the object
rather than accepting the default values for n, fc1, and fc2. Notice that
you can include the sampling frequency fs as the final input argument,
and that you specify the cutoff frequencies in Hz since fs is in Hz.

d = fdesign.bandpass('n,fc1,fc2', 10, 9600, 14400, 48000)
d =

Response: 'Bandpass with cutoff'
Specification: 'N,Fc1,Fc2'

Description: {3x1 cell}
NormalizedFrequency: false

Fs: 48000
FilterOrder: 10

Fcutoff1: 9600
Fcutoff2: 14400

See Also fdesign, fdesign.bandstop, fdesign.highpass, fdesign.lowpass

2-572

fdesign.bandstop

Purpose Bandstop filter specification object

Syntax d = fdesign.bandstop
d = fdesign.bandstop(spec)
d = fdesign.bandstop(spec,specvalue1,specvalue2,...)
d = fdesign.bandstop(specvalue1,specvalue2,specvalue3,specvalue4,...
specvalue5,specvalue6,specvalue7)
d = fdesign.bandstop(...,fs)
d = fdesign.bandstop(...,magunits)

Description d = fdesign.bandstop constructs a bandstop filter specification object
d, applying default values for the properties Fpass1, Fstop1, Fstop2,
Fpass2, Apass1, Astop1 and Apass2.

Using fdesign.bandstop with a design method generates a dfilt
object.

d = fdesign.bandstop(spec) constructs object d and sets its
’Specification’ to spec. Entries in the spec string represent various
filter response features, such as the filter order, that govern the filter
design. Valid entries for spec are shown below. The strings are not
case sensitive.

• fp1,fst1,fst2,fp2,ap1,ast,ap2 (defaultspec)

• n,f3dB1,f3dB2

• n,f3dB1,f3dB2,ap

• n,f3dB1,f3dB2,ap,ast

• n,f3dB1,f3dB2,ast

• n,f3dB1,f3dB2,bwp

• n,f3dB1,f3dB2,bwst

• n,fc1,fc2

• n,fp1,fp2,ap

• n,fp1,fp2,ap,ast

2-573

fdesign.bandstop

• n,fp1,fst1,fst2,fp2

• n,fp1,fst1,fst2,fp2,ap

• n,fst1,fst2,ast

• nb,na,fp1,fst1,fst2,fp2

The string entries are defined as follows:

• ap — amount of ripple allowed in the passband in decibels (the
default units). Also called Apass.

• ast — attenuation in the first stopband in decibels (the default
units). Also called Astop1.

• bwp — bandwidth of the filter passband. Specified in normalized
frequency units.

• bwst — bandwidth of the filter stopband. Specified in normalized
frequency units.

• f3dB1 — cutoff frequency for the point 3 dB point below the passband
value for the first cutoff. Specified in normalized frequency units.

• f3dB2 — cutoff frequency for the point 3 dB point below the passband
value for the second cutoff. Specified in normalized frequency units.

• fp1 — frequency at the start of the pass band. Specified in
normalized frequency units. Also called Fpass1.

• fp2 — frequency at the end of the pass band. Specified in normalized
frequency units. Also called Fpass2.

• fst1 — frequency at the end of the first stop band. Specified in
normalized frequency units. Also called Fstop1.

• fst2 — frequency at the start of the second stop band. Specified in
normalized frequency units. Also called Fstop2.

• n — filter order.

• na — denominator order for IIR filters.

2-574

fdesign.bandstop

• nb — numerator order for IIR filters.

Graphically, the filter specifications look similar to those shown in the
following figure.

Regions between specification values like fp1 and fst1 are transition
regions where the filter response is not explicitly defined.

The filter design methods that apply to a bandstop filter specification
object change depending on the Specification string. Use
designmethods to determine which design method applies to an object
and its specification string.

d = fdesign.bandstop(spec,specvalue1,specvalue2,...)
constructs an object d and sets its specifications at construction time.

d =
fdesign.bandstop(specvalue1,specvalue2,specvalue3,specvalue4,...
specvalue5,specvalue6,specvalue7) constructs an
object d with the default Specification property string
fpass1,fstop1,fstop2,fpass2,apass1,astop,apass2,
using the values you provide in
specvalue1,specvalue2,specvalue3,specvalue4,specvalue5,
specvalue6 and specvalue7.

2-575

fdesign.bandstop

d = fdesign.bandstop(...,fs) adds the argument fs, specified in Hz
to define the sampling frequency to use. In this case, all frequencies in
the specifications are in Hz as well.

d = fdesign.bandstop(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of

• linear — specify the magnitude in linear units

• dB — specify the magnitude in dB (decibels)

• squared — specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples These examples show how to construct a bandpass filter specification
object. First, create a default specifications object without using input
arguments.

d = fdesign.bandstop
d =

Response: 'Minimum-order bandstop'
Description: {7x1 cell}

Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
NormalizedFrequency: true

Fpass1: 0.3500
Fstop1: 0.4500
Fstop2: 0.5500
Fpass2: 0.6500
Apass1: 1
Astop: 60

Apass2: 1

2-576

fdesign.bandstop

Now create an object by passing a specification type string ’n,fc1,fc2’ —
the resulting object uses default values for n, fc1, and fc2.

d=fdesign.bandstop('n,f3dB1,f3dB2')

d =

Response: 'Bandstop with cutoff'
Specification: 'N,F3dB1,F3dB2'

Description: {3x1 cell}
NormalizedFrequency: true

FilterOrder: 10
Fcutoff1: 0.4000
Fcutoff2: 0.6000

designmethods(d)

Design Methods for class fdesign.bandstop:

butter
cheby1
cheby2
ellip

Create another bandstop filter, passing the specification values to the
object rather than accepting the default values for n, f3db1, and fc2.
Notice that you can add fs as the final input argument to specify the
sampling frequency of 48 kHz.

d = fdesign.bandstop('n,f3db1,f3db2', 10, 9600, ...
14400, 48000)

d =

Response: 'Bandstop with cutoff'
Specification: 'N,F3dB1,F3dB2'

Description: {3x1 cell}
NormalizedFrequency: false

2-577

fdesign.bandstop

Fs: 48000
FilterOrder: 10

Fcutoff1: 9600
Fcutoff2: 14400

For this bandstop filter, pass the filter specifications that correspond to
the default Specification — fp1,fst1,fst2,fp2,ap1,ast,ap2.

d = fdesign.bandstop(0.3,0.4,0.6,0.7,0.5,60,1)

d =

Response: 'Minimum-order bandstop'
Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'

Description: {7x1 cell}
NormalizedFrequency: true

Fpass1: 0.3000
Fstop1: 0.4000
Fstop2: 0.6000
Fpass2: 0.7000
Apass1: 0.5000
Astop: 60

Apass2: 1

And for the final example, pass the magnitude specifications in squared
units, using the magunits option squared.

d = fdesign.bandstop(0.4,0.5,0.6,0.7,0.98,...
0.01,0.99,'squared')
d =

Response: 'Minimum-order bandstop'
Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'

Description: {7x1 cell}
NormalizedFrequency: true

Fpass1: 0.4000
Fstop1: 0.5000
Fstop2: 0.6000

2-578

fdesign.bandstop

Fpass2: 0.7000
Apass1: 0.0877
Astop: 20

Apass2: 0.0436

See Also fdesign, fdesign.bandpass, fdesign.highpass, fdesign.lowpass

2-579

fdesign.ciccomp

Purpose CIC compensator filter specification object

Syntax h = fdesign.ciccomp
h = fdesign.ciccomp(d,nsections)
h = fdesign.ciccomp(...,spec)
h = fdesign.ciccomp(...,spec,specvalue1,specvalue2,...)

Description h = fdesign.ciccomp constructs a CIC compensator specifications
object d, applying default values for the properties Fpass, Fstop, Apass,
and Astop. In this syntax, the filter has two sections and the differential
delay is 1.

Using fdesign.ciccomp with a design method creates a dfilt object,
a single-rate discrete-time filter.

h = fdesign.ciccomp(d,nsections) constructs a CIC compensator
specifications object with the filter differential delay set to d and the
number of sections in the filter set to nsections. By default, d and
nsections are 1 and 2 if you omit them as input arguments.

h = fdesign.ciccomp(...,spec) constructs a CIC Compensator
specifications object and sets its Specification property to spec.
Entries in the spec string represent various filter response features,
such as the filter order, that govern the filter design. Valid entries for
spec are shown in the list below. The strings are not case sensitive.

• fp,fst,ap,ast (default spec)

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fst,ap,ast

The string entries are defined as follows:

• ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

2-580

fdesign.ciccomp

• ast — attenuation in the stop band in decibels (the default units).
Also called Astop.

• fc — cutoff frequency for the point 3 dB point below the passband
value. Specified in normalized frequency units.

• fp — frequency at the end of the pass band. Specified in normalized
frequency units. Also called Fpass.

• fst — frequency at the start of the stop band. Specified in normalized
frequency units. Also called Fstop.

• n — filter order.

In graphic form, the filter specifications look like this:

Regions between specification values like fp and fst are transition
regions where the filter response is not explicitly defined.

The filter design methods that apply to a CIC compensator
specifications object change depending on the Specification string.
Use designmethods to determine which design method applies to an
object and its specification string.

h = fdesign.ciccomp(...,spec,specvalue1,specvalue2,...)
constructs an object and sets the specifications in the order they are
specified in the spec input when you construct the object.

2-581

fdesign.ciccomp

Designing CIC Compensators

Typically, when they develop filters, designers want flat passbands and
transition regions that are as narrow as possible. CIC filters present a
(sinx/x) profile in the passband and relatively wide transitions.

To compensate for this fall off in the passband, and to try to reduce the
width of the transition region, you can use a CIC compensator filter that
demonstrates an (x/sinx) profile in the passband. fdesign.ciccomp is
specifically tailored to designing CIC compensators.

Here is a plot of a CIC filter and a compensator for that filter. The
example that produces these filters follows the plot.

0 5 10 15 20 25 30 35 40 45

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

CIC Decimator hd(1)

CIC Compensator hd(2)

Resulting Cascade Filter hd(1), hd(2)

Given a CIC filter, how do you design a compensator for that filter? CIC
compensators share three defining properties with the CIC filter —

2-582

fdesign.ciccomp

differential delay, d; number of sections, numberofsections; and the
usable passband frequency, Fpass.

By taking the number of sections, passband, and differential delay from
your CIC filter and using them in the definition of the CIC compensator,
the resulting compensator filter effectively corrects for the passband
droop of the CIC filter, and narrows the transition region.

As a demonstration of this concept, this example creates a CIC
decimator and its compensator.

fs = 96e3; % Input sampling frequency.
fpass = 4e3; % Frequency band of interest.
m = 6; % Decimation factor.
hcic = design(fdesign.decimator(m,'cic',1,fpass,60,fs));
hd = cascade(dfilt.scalar(1/gain(hcic)),hcic);
hd(2) = design(fdesign.ciccomp(hcic.differentialdelay, ...

hcic.numberofsections,fpass,4.5e3,.1,60,fs/m));
fvtool(hd(1),hd(2),...
cascade(hd(1),hd(2)),'Fs',[96e3 96e3/m 96e3])

You see the results in the preceding plot.

Examples Designed to compensate for the roll-off inherent in CIC filters, CIC
compensators can improve the performance of your CIC design.
This example designs a compensator d with five sections and a
differential delay equal to one. The plot displayed after the code shows
the increasing gain in the passband that is characteristic of CIC
compensators, to overcome the droop in the CIC filter passband. Ideally,
cascading the CIC compensator with the CIC filter results in a lowpass
filter with flat passband response and narrow transition region.

h = fdesign.ciccomp;
set(h, 'NumberOfSections', 5, 'DifferentialDelay', 1);
hd = equiripple(h);
fvtool(hd);

2-583

fdesign.ciccomp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

This compensator would work for a decimator or interpolator that had
differential delay of 1 and 5 sections.

See Also fdesign.decimator, fdesign.interpolator

2-584

fdesign.decimator

Purpose Decimator filter specification object

Syntax d = fdesign.decimator(m)
d = fdesign.decimator(m,design)
d = fdesign.decimator(m,design,spec)
d = fdesign.decimator(...,spec,specvalue1,specvalue2,...)
d = fdesign.decimator(...,fs)
d = fdesign.decimator(...,magunits)

Description d = fdesign.decimator(m) constructs a decimating filter specification
object d, applying default values for the properties fp, fst, ap,
and ast and using the default design, Nyquist. Specify m, the
decimation factor, as an integer. When you omit the input argument m,
fdesign.decimator sets the decimation factor m to 2.

Using fdesign.decimator with a design method generates an mfilt
object.

d = fdesign.decimator(m,design) constructs a decimator with the
decimation factor m and the design type you specify in design. By using
the design input argument, you can choose the sort of filter that results
from using the decimator specifications object. design accepts the
following strings that define the filter response.

design String Description

arbmag Sets the design for the decimator specifications
object to Arbitrary Magnitude.

arbmagnphase Sets the design for the decimator specifications
object to Arbitrary Magnitude and Phase.

bandpass Sets the design for the decimator specifications
object to bandpass.

bandstop Sets the design for the decimator specifications
object to bandstop.

cic Sets the design for the decimator specifications
object to CIC filter.

2-585

fdesign.decimator

design String Description

ciccomp Sets the design for the decimator specifications
object to CIC compensator.

halfband Sets the design for the decimator specifications
object to halfband.

highpass Sets the design for the decimator specifications
object to highpass.

isinclp Sets the design for the decimator specifications
object to inverse-sinc lowpass.

lowpass Sets the design for the decimator specifications
object to lowpass.

nyquist Sets the design for the decimator specifications
object to Nyquist.

Notice the entries in the first column. They match the design method
names. However, when you create your specifications object, the
Response property contains the full name of the response, such as
CIC Compensator or Inverse-Sinc Lowpass, rather than the shorter
method names isinclp or ciccomp. So, when designing a new filter
object, use the design String name shown in the left column of the table.
To change the Response property value for an existing specifications
object, use the full response name.

d = fdesign.decimator(m,design,spec) constructs object d and sets its
Specification property to spec. Entries in the spec string represent
various filter response features, such as the filter order, that govern
the filter design. Valid entries for spec depend on the design type of
the specifications object.

When you add the spec input argument, you must also add the design
input argument.

Because you are designing multirate filters, the specification strings
available are not the same as the specifications for designing single-rate

2-586

fdesign.decimator

filters with such design methods as fdesign.lowpass. The strings
are not case sensitive.

Notice that the decimation factor m is not in the specification strings.
Various design types provide different specifications, as shown in this
table.

Design Type Valid Specification Strings

Arbitrary
Magnitude

• n,f,a (default string)

• n,b,f,a

Arbitrary
Magnitude and
Phase

• n,f,h (default string)

• n,b,f,h

Bandpass • fst1,fp1,fp2,fst2,ast1,ap,ast2 (default
string)

• n,fc1,fc2

• n,fst1,fp1,fp2,fst2

Bandstop • n,fc1,fc2

• n,fp1,fst1,fst2,fp2

• fp1,fst1,fst2,fp2,ap1,ast,ap2 (default
string)

CIC • fp,ast (default and only string)

CIC
Compensator

• fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fst,ap,ast

2-587

fdesign.decimator

Design Type Valid Specification Strings

Halfband • tw,ast (default string)

• n,tw

• n

• n,ast

Highpass • fst,fp,ast,ap (default string)

• n,fc

• n,fc,ast,ap

• n,fp,ast,ap

• n,fst,fp,ap

• n,fst,fp,ast

• n,fst,ast,ap

• n,fst,fp

Inverse-Sinc
Lowpass

• fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fst,ap,ast

• n,fp,ap,ast

• n,fp,fst

2-588

fdesign.decimator

Design Type Valid Specification Strings

Lowpass • fp,fst,ap,ast (default string)

• n,fc

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fp,fst,ap

• n,fp,fst,ast

• n,fst,ap,ast

Nyquist • tw,ast (default string)

• n,tw

• n

• n,ast

The string entries are defined as follows:

• a — amplitude vector. Values in a define the filter amplitude at
frequency points you specify in f, the frequency vector. If you use a,
you must use f as well. Amplitude values must be real.

• ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

• ap1 — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass1. Bandpass and bandstop filters
use this option.

• ap2 — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass2. Bandpass and bandstop filters
use this option.

2-589

fdesign.decimator

• ast — attenuation in the first stop band in decibels (the default
units). Also called Astop.

• ast1 — attenuation in the first stop band in decibels (the default
units). Also called Astop1. Bandpass and bandstop filters use this
option.

• ast2 — attenuation in the first stop band in decibels (the default
units). Also called Astop2. Bandpass and bandstop filters use this
option.

• b — number of bands in the multiband filter

• f — frequency vector. Frequency values in f specify locations where
you provide specific filter response amplitudes. When you provide f
you must also provide a.

• fc1 — cutoff frequency for the point 3 dB point below the passband
value for the first cutoff. Specified in normalized frequency units.
Bandpass and bandstop filters use this option.

• fc2 — cutoff frequency for the point 3 dB point below the passband
value for the second cutoff. Specified in normalized frequency units.
Bandpass and bandstop filters use this option.

• fp1 — frequency at the start of the pass band. Specified in
normalized frequency units. Also called Fpass1. Bandpass and
bandstop filters use this option.

• fp2 — frequency at the end of the pass band. Specified in normalized
frequency units. Also called Fpass2. Bandpass and bandstop filters
use this option.

• fst1 — frequency at the end of the first stop band. Specified in
normalized frequency units. Also called Fstop1. Bandpass and
bandstop filters use this option.

• fst2 — frequency at the start of the second stop band. Specified
in normalized frequency units. Also called Fstop2. Bandpass and
bandstop filters use this option.

• h — complex frequency response values

2-590

fdesign.decimator

• n — filter order.

• tw — width of the transition region between the pass and stop bands.
Both halfband and Nyquist filters use this option.

d = fdesign.decimator(...,spec,specvalue1,specvalue2,...)
constructs an object d and sets its specifications at construction time.

d = fdesign.decimator(...,fs) adds the argument fs, specified in
Hz, to define the sampling frequency to use. In this case, all frequencies
in the specifications are in Hz as well.

d = fdesign.decimator(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of

• linear — specify the magnitude in linear units.

• dB — specify the magnitude in dB (decibels).

• squared — specify the magnitude in power units.

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples These examples show how to construct decimating filter specification
objects. First, create a default specifications object without using input
arguments except for the decimation factor m.

d = fdesign.decimator(2,'nyquist',2,0.1,80) % Set tw=0.1, and ast=80.

d =

MultirateType: 'Decimator'

Response: 'Nyquist'

DecimationFactor: 2

Specification: 'TW,Ast'

2-591

fdesign.decimator

Description: {'Transition Width';

'Stopband Attenuation (decibels)'}

NormalizedFrequency: true

TransitionWidth: 0.1

Astop: 80

Now create an object by passing a specification type string
’fst1,fp1,fp2,fst2,ast1,ap,ast2’ and a design — the resulting
object uses default values for the filter specifications. You must provide
the design input argument, bandpass in this example, when you include
a specification.

d=fdesign.decimator(8,'bandpass','fst1,fp1,fp2,fst2,...
ast1,ap,ast2')

d =

MultirateType: 'Decimator'
Response: 'Bandpass'

DecimationFactor: 8
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'

Description: {7x1 cell}
NormalizedFrequency: true

Fstop1: 0.35
Fpass1: 0.45
Fpass2: 0.55
Fstop2: 0.65
Astop1: 60
Apass: 1

Astop2: 60

Create another decimating filter specification object, passing the
specification values to the object rather than accepting the default
values for fp,fst,ap,ast.

d=fdesign.decimator(3,'lowpass',.45,0.55,.1,60)

d =

2-592

fdesign.decimator

MultirateType: 'Decimator'
Response: 'Lowpass'

DecimationFactor: 3
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

Fpass: 0.45
Fstop: 0.55
Apass: 0.1
Astop: 60

Now pass the filter specifications that correspond to the specifications
— n,fc,ap,ast.

d=fdesign.decimator(3,'ciccomp',1,2,'n,fc,ap,ast',...
20,0.45,.05,50)

d =

MultirateType: 'Decimator'
Response: 'CIC Compensator'

DecimationFactor: 3
Specification: 'N,Fc,Ap,Ast'

Description: {4x1 cell}
NumberOfSections: 2

DifferentialDelay: 1
NormalizedFrequency: true

FilterOrder: 20
Fcutoff: 0.45

Apass: 0.05
Astop: 50

Now design a decimator using the kaiserwin design method.

hm = kaiserwin(d)

2-593

fdesign.decimator

Pass a new specification type for the filter, specifying the filter order.
Note that the inputs must include the differential delay dd with the CIC
input argument to design a CIC specification object.

m = 5;

dd = 2;

d = fdesign.decimator(m,'cic',dd,'fp,ast',0.55,55)

d =

MultirateType: 'Decimator'

Response: 'CIC'

DecimationFactor: 5

Specification: 'Fp,Ast'

Description: {'Passband Frequency';'

Stopband Attenuation(decibels)'}

DifferentialDelay: 2

NormalizedFrequency: true

Fpass: 0.55

In this example, you specify a sampling frequency as the last input
argument. Here is it 1000 Hz.

d=fdesign.decimator(8,'bandpass','fst1,fp1,fp2,fst2,...
ast1,ap,ast2',0.25,0.35,.55,.65,50,.05,50,1e3)

d =

MultirateType: 'Decimator'
Response: 'Bandpass'

DecimationFactor: 8
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'

Description: {7x1 cell}
NormalizedFrequency: false

Fs: 1000
Fstop1: 0.25
Fpass1: 0.35
Fpass2: 0.55

2-594

fdesign.decimator

Fstop2: 0.65
Astop1: 50
Apass: 0.05

Astop2: 50

In this, the last example, use the linear option for the filter specification
object and specify the stopband ripple attenuation in linear format.

hs = fdesign.decimator(4,'lowpass','n,fst,ap,ast',15,0.55,.05,50,...

1e-3,'linear') % 1e-3 = 60decibels.

hs =

Response: 'Lowpass decimator'

Specification: 'TW,Ast'

Description: {'Transition Width';'

Stopband Attenuation (decibels)'}

DecimationFactor: 4

NormalizedFrequency: false

Fs: 500

TransitionWidth: 0.1

Astop: 60

Design the filter and display the magnitude response in FVTool.

designmethods(hs);
equiripple(hs); % Starts FVTool to display the response.

2-595

fdesign.decimator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−12

−10

−8

−6

−4

−2

0

2

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

See Also fdesign, fdesign.arbmag, fdesign.arbmagnphase,
fdesign.interpolator, fdesign.rsrc

2-596

fdesign.differentiator

Purpose Differentiator filter specification object

Syntax d = fdesign.differentiator
d = fdesign.differentiator(spec)
d = fdesign.differentiator(spec,specvalue1,specvalue2, ...)
d = fdesign.differentiator(specvalue1)
d = fdesign.differentiator(...,fs)
d = fdesign.differentiator(...,magunits)

Description d = fdesign.differentiator constructs a default differentiator filter
designer d with the filter order set to 31.

d = fdesign.differentiator(spec) initializes the filter designer
Specification property to spec. You provide one of the following
strings as input to replace spec. The string you provide is not case
sensitive:

• n — full band differentiator (default).

• n,fp,fst — partial band differentiator.

• ap — minimum-order full band differentiator.

• fp,fst,ap,ast — minimum-order partial band differentiator.

The string entries are defined as follows:

• ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

• ast — attenuation in the stop band in decibels (the default units).
Also called Astop.

• fp — frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass.

• fst — frequency at the end of the stop band. Specified in normalized
frequency units. Also called Fstop.

• n — filter order.

2-597

fdesign.differentiator

By default, fdesign.differentiator assumes that all frequency
specifications are provided in normalized frequency units. Also, decibels
is the default for all magnitude specifications.

Different specification strings may have different design methods
available. Use designmethods(d) to get a list of the design methods
available for a given specification string.

d = fdesign.differentiator(spec,specvalue1,specvalue2, ...)
initializes the filter designer specifications in spec with specvalue1,
specvalue2, and so on. To get a description of the specifications
specvalue1, specvalue2, and more, enter

get(d,'description')

at the Command prompt.

d = fdesign.differentiator(specvalue1) assumes the default
specification string n, setting the filter order to the value you provide.

d = fdesign.differentiator(...,fs) adds the argument fs, specified
in Hz to define the sampling frequency to use. In this case, all
frequencies in the specifications are in Hz as well.

d = fdesign.differentiator(...,magunits) specifies the units for
any magnitude specification you provide in the input arguments.
magunits can be one of

• linear — specify the magnitude in linear units

• dB — specify the magnitude in dB (decibels)

• squared — specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples The toolbox lets you design a range of differentiators. These examples
present a few possible designs. The first example designs a 33rd-order

2-598

fdesign.differentiator

full band differentiator. The FVTool plot following the code shows the
resulting 33rd-order filter.

d = fdesign.differentiator(33); % Filter order is 33.
designmethods(d);

hd = design(d,'firls');
fvtool(hd,'magnitudedisplay','zero-phase',...
'frequencyrange','[-pi, pi)')

Design Methods for class fdesign.differentiator (N):

equiripple
firls

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−3

−2

−1

0

1

2

3

Normalized Frequency (×π rad/sample)

A
m

pl
itu

de

Zero−phase Response

2-599

fdesign.differentiator

For the second example, design a narrow band differentiator.
Differentiate the first 25 percent of the frequencies in the Nyquist range
and filter the higher frequencies.

d = fdesign.differentiator('n,fp,fst',54,.25,.3);
designmethods(d);
hd = design(d,'equiripple');
fvtool(hd,'magnitudedisplay','zero-phase');
set(hf,'frequencyrange','[-fs/2, fs/2)')

Here is the view from FVTool.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Normalized Frequency (×π rad/sample)

A
m

pl
itu

de

Zero−phase Response

Finally, design a minimum-order, wide-band differentiator.

d = fdesign.differentiator('fp,fst,ap,ast',.8,.9,1,80);

2-600

fdesign.differentiator

designmethods(d);
hd = design(d,'equiripple');
fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange')

FVTool returns this plot.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Normalized Frequency (×π rad/sample)

A
m

pl
itu

de
Zero−phase Response

See Also design, fdesign, setspecs

2-601

fdesign.fracdelay

Purpose Fractional delay filter specification object

Syntax d = fdesign.fracdelay(delta)
d = fdesign.fracdelay(delta,'N')
d = fdesign.fracdelay(delta,'N',n)
d = fdesign.fracdelay(delta,n)
d = fdesign.fracdelay(...,fs)

Description d = fdesign.fracdelay(delta) constructs a default fractional delay
filter designer d with the filter order set to 3 and the delay value set to
delta. The fractional delay delta must be between 0 and 1 samples.

d = fdesign.fracdelay(delta,'N') initializes the filter designer
specification string to N, where N specifies the fractional delay filter
order and defaults to filter order of 3.

Use designmethods(d) to get a list of the design methods available
for a specification string.

d = fdesign.fracdelay(delta,'N',n) initializes the filter designer
to specification string N and sets the filter order to n.

d = fdesign.fracdelay(delta,n) assumes the default specification N,
filter order, and sets the filter order to the value you provide in input n.

d = fdesign.fracdelay(...,fs) adds the argument fs, specified
in units of Hertz (Hz) to define the sampling frequency. In this case,
specify the fractional delay delta to be between 0 and 1/fs.

Examples Design a second-order fractional delay filter of 0.2 samples using the
Lagrange method. Implement the filter using a Farrow fractional delay
(fd) structure.

d = fdesign.fracdelay(0.2,'N',2);
hd = design(d,'lagrange','filterstructure','fd');
fvtool(hd,'analysis','grpdelay')

Design a cubic fractional delay filter with a sampling frequency of 8 kHz
and fractional delay of 50 microseconds using the Lagrange method.

2-602

fdesign.fracdelay

d = fdesign.fracdelay(50e-6,'N',3,8000);
Hd = design(d, 'lagrange', 'FilterStructure', 'fd');
fvtool(Hd)

See Also design, designopts, fdesign, setspecs

2-603

fdesign.halfband

Purpose Halfband filter specification object

Syntax d = fdesign.halfband
d = fdesign.halfband(spec)
d = fdesign.halfband(spec,specvalue1,specvalue2,...)
d = fdesign.halfband(specvalue1,specvalue2)
d = fdesign.halfband(...,fs)
d = fdesign.halfband(...,magunits)

Description d = fdesign.halfband constructs a halfband filter specification object d,
applying default values for the properties tw and ast.

Using fdesign.halfband with a design method generates a dfilt
object.

d = fdesign.halfband(spec) constructs object d and sets its
’Specification’ to spec. Entries in the spec string represent various
filter response features, such as the filter order, that govern the filter
design. Valid entries for spec are shown below. The strings are not
case sensitive.

• tw,ast (default spec)

• n,tw

• n

• n,ast

The string entries are defined as follows:

• ast — attenuation in the stop band in decibels (the default units).

• n — filter order.

• tw — width of the transition region between the pass and stop bands.
Specified in normalized frequency units.

The filter design methods that apply to a halfband filter specification
object change depending on the Specification string. Use

2-604

fdesign.halfband

designmethods to determine which design method applies to an object
and its specification string.

d = fdesign.halfband(spec,specvalue1,specvalue2,...)
constructs an object d and sets its specifications at construction time.

d = fdesign.halfband(specvalue1,specvalue2) constructs an
object d assuming the default Specification property string tw,ast,
using the values you provide for the input arguments specvalue1 and
specvalue2 for tw and ast.

d = fdesign.halfband(...,fs) adds the argument fs, specified in Hz
to define the sampling frequency to use. In this case, all frequencies in
the specifications are in Hz as well.

d = fdesign.halfband(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of

• linear — specify the magnitude in linear units

• dB — specify the magnitude in dB (decibels)

• squared — specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples These examples show how to construct a halfband filter specification
object. First, create a default specifications object without using input
arguments.

d=fdesign.halfband

d =

Response: 'Minimum-order halfband'
Specification: 'TW,Ast'

2-605

fdesign.halfband

Description: {2x1 cell}
NormalizedFrequency: true

TransitionWidth: 0.1000
Astop: 80

Now create an object by passing a specification type string ’n,ast’ — the
resulting object uses default values for n and ast.

d=fdesign.halfband('n,ast')

d =

Response: 'Halfband with filter order

and stopband attenuation'

Specification: 'N,Ast'

Description: {2x1 cell}

NormalizedFrequency: true

FilterOrder: 10

Astop: 80

Create another halfband filter object, passing the specification values to
the object rather than accepting the default values for n and ast.

d = fdesign.halfband('n,ast', 42, 80)

d =

Response: 'Halfband with filter order

and stopband attenuation'

Specification: 'N,Ast'

Description: {2x1 cell}

NormalizedFrequency: true

FilterOrder: 42

Astop: 80

For another example, pass the filter values that correspond to the
default Specification — n,ast.

2-606

fdesign.halfband

d = fdesign.halfband(.01, 80)

d =

Response: 'Minimum-order halfband'
Specification: 'TW,Ast'

Description: {2x1 cell}
NormalizedFrequency: true

TransitionWidth: 0.0100
Astop: 80%

This example designs an equiripple FIR filter, starting by passing a new
specification type and specification values to fdesign.halfband.

hs = fdesign.halfband('n,ast',80,70);
hs

hs =

Response: [1x51 char]
Specification: 'N,Ast'

Description: {2x1 cell}
NormalizedFrequency: true

FilterOrder: 80
Astop: 70

equiripple(hs); % Opens FVTool automatically.

In the final example, pass the for the filter, and then design a
least-squares FIR filter from the object, using firls as the design
method.

hs = fdesign.halfband('n,tw', 42, .04)

hs =

Response: [1x47 char]
Specification: 'N,TW'

2-607

fdesign.halfband

Description: {2x1 cell}
NormalizedFrequency: true

FilterOrder: 42
TransitionWidth: 0.0400

designmethods(hs)

Design Methods for class fdesign.halfband:

equiripple
kaiserwin
firls

hd=firls(hs)

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x43 double]

PersistentMemory: false
States: [42x1 double]

See Also fdesign, fdesign.decimator, fdesign.interpolator,
fdesign.nyquist

2-608

fdesign.highpass

Purpose Highpass filter specification object

Syntax d = fdesign.highpass
d = fdesign.highpass(spec)
d = fdesign.highpass(spec,specvalue1,specvalue2,...)
d = fdesign.highpass(specvalue1,specvalue2,specvalue3,
specvalue4)
d = fdesign.highpass(...,fs)
d = fdesign.highpass(...,magunits)

Description d = fdesign.highpass constructs a highpass filter specification object
d, applying default values for the properties fst, fp, ast and ap.

Using fdesign.highpass with a design method generates a dfilt
object.

d = fdesign.highpass(spec) constructs object d and sets its
’Specification’ to spec. Entries in the spec string represent various
filter response features, such as the filter order, that govern the filter
design. Valid entries for spec are shown below. The strings are not
case sensitive.

• fst,fp,ast,ap (default spec)

• n,f3db

• n,f3db,ap

• n,f3db,ast

• n,f3db,ast,ap

• n,f3db,fp

• n,fc

• n,fc,ast,ap

• n,fp,ap

• n,fp,ast,ap

• n,fst,ast

2-609

fdesign.highpass

• n,fst,ast,ap

• n,fst,f3db

• n,fst,fp

• n,fst,fp,ap

• n,fst,fp,ast

• nb,na,fst,fp

The string entries are defined as follows:

• ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

• ast — attenuation in the stop band in decibels (the default units).
Also called Astop.

• f3db — cutoff frequency for the point 3 dB point below the passband
value. Specified in normalized frequency units.

• fc — cutoff frequency for the point 3 dB point below the passband
value. Specified in normalized frequency units.

• fp — frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass.

• fst — frequency at the end of the stop band. Specified in normalized
frequency units. Also called Fstop.

• n — filter order.

• na and nb are the order of the denominator and numerator.

Graphically, the filter specifications look similar to those shown in the
following figure.

2-610

fdesign.highpass

Regions between specification values like fst1 and fp are transition
regions where the filter response is not explicitly defined.

The filter design methods that apply to a highpass filter specification
object change depending on the Specification string. Use
designmethods to determine which design method applies to an object
and its specification string.

d = fdesign.highpass(spec,specvalue1,specvalue2,...)
constructs an object d and sets its specification values at construction
time.

d = fdesign.highpass(specvalue1,specvalue2,specvalue3,
specvalue4) constructs an object d with the values for the default
Specification property string, using the specifications you provide as
input arguments specvalue1,specvalue2,specvalue3,specvalue4.

d = fdesign.highpass(...,fs) adds the argument fs, specified in Hz
to define the sampling frequency to use. In this case, all frequencies in
the specifications are in Hz as well.

d = fdesign.highpass(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of

• linear — specify the magnitude in linear units

• dB — specify the magnitude in dB (decibels)

• squared — specify the magnitude in power units

2-611

fdesign.highpass

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples These examples how to construct a highpass filter specification
object. First, create a default specifications object without using input
arguments.

d=fdesign.highpass

d =

Response: 'Minimum-order highpass'
Specification: 'Fst,Fp,Ast,Ap'

Description: {4x1 cell}
NormalizedFrequency: true

Fstop: 0.4500
Fpass: 0.5500
Astop: 60
Apass: 1

This time, pass the specifications that correspond to the default
Specification string.

hs = fdesign.highpass(.4,.5,80,1);

hs =

Response: 'Minimum-order highpass'
Specification: 'Fst,Fp,Ast,Ap'

Description: {4x1 cell}
NormalizedFrequency: true

Fstop: 0.4000
Fpass: 0.5000
Astop: 80
Apass: 1

2-612

fdesign.highpass

Now create an object by passing a specification type string 'n,fc' —
the resulting object uses default values for n and fc.

d=fdesign.highpass('n,fc')

d =

Response: 'Highpass with cutoff'
Specification: 'N,Fc'

Description: {2x1 cell}
NormalizedFrequency: true

FilterOrder: 10
Fcutoff: 0.5000

Create the same filter, passing the values for n and fc rather than
accepting the default values. Notice that you can add include the
sampling frequency fs as the final input argument. Adding fs puts all
the frequency specifications into linear frequency format, rather than
normalized frequency.

d=fdesign.highpass('n,fc',10,9600,48000)

d =

Response: 'Highpass with cutoff'
Specification: 'N,Fc'

Description: {2x1 cell}
NormalizedFrequency: false

Fs: 48000
FilterOrder: 10

Fcutoff: 9600

Finally, pass values for the filter specifications that match the default
Specification string — fp = 10, fst = 12, ast = 80 and ap = 0.5. Add
the sampling frequency on the end.

d=fdesign.highpass(10,12,80,0.5,48000)

2-613

fdesign.highpass

d =

Response: 'Minimum-order highpass'
Specification: 'Fst,Fp,Ast,Ap'

Description: {4x1 cell}
NormalizedFrequency: false

Fs: 48000
Fstop: 10
Fpass: 12
Astop: 80

To demonstrate the magunits input option, pass the magnitude
specifications in squared units and include the squared input argument
for magunits.

hs = fdesign.highpass(.4, .5, .02, .98, 'squared');
hd = cheby1(hs);
fvtool(hd,'MagnitudeDisplay','Magnitude Squared');

The following figure shows the filter response.

2-614

fdesign.highpass

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 s

qu
ar

ed

Magnitude Response (squared)

See Also fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.lowpass

2-615

fdesign.hilbert

Purpose Hilbert filter specification object

Syntax d = fdesign.hilbert
d = fdesign.hilbert(specvalue1,specvalue2)
d = fdesign.hilbert(spec)
d = fdesign.hilbert(spec,specvalue1,specvalue2)
d = fdesign.hilbert(...,fs)
d = fdesign.hilbert(...,magunits)

Description d = fdesign.hilbert constructs a default Hilbert filter designer d
with n, the filter order, set to 31.

d = fdesign.hilbert(specvalue1,specvalue2) constructs a Hilbert
filter designer d assuming the default specification string n,tw. You
input specvalue1 and specvalue2 for n and tw.

d = fdesign.hilbert(spec) initializes the filter designer
Specification property to spec. You provide one of the following
strings as input to replace spec. The string you provide is not case
sensitive:

• n,tw — default spec string.

• tw,ap — minimum-order Hilbert filter.

The string entries are defined as follows:

• ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

• n — filter order.

• tw — width of the transition region between the pass and stop bands.

By default, fdesign.hilbert assumes that all frequency specifications
are provided in normalized frequency units. Also, decibels is the default
for all magnitude specifications.

2-616

fdesign.hilbert

Different specification strings may have different design methods
available. Use designmethods(d) to get a list of the design methods
available for a given specification string.

d = fdesign.hilbert(spec,specvalue1,specvalue2) initializes the
filter designer specifications in spec with specvalue1, specvalue2,
and so on. To get a description of the specifications specvalue1 and
specvalue2, enter

get(d,'description')

at the Command prompt.

d = fdesign.hilbert(...,fs) adds the argument fs, specified in Hz
to define the sampling frequency to use. In this case, all frequencies in
the specifications are in Hz as well.

d = fdesign.hilbert(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of

• linear — specify the magnitude in linear units

• dB — specify the magnitude in dB (decibels)

• squared — specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples The toolbox lets you design a range of Hilbert filters. These examples
present a few possible designs. The first example designs a 30th-order
type III Hilbert transformer filter. The FVTool plot following the code
shows the resulting filter.

d = fdesign.hilbert(30,0.2); % n,tw specification string.
designmethods(d);

2-617

fdesign.hilbert

hd = design(d,'firls');
fvtool(hd,'magnitudedisplay','zero-phase',...
'frequencyrange','[-pi, pi)')

Design Methods for class fdesign.hilbert (N,TW):

ellip
iirlinphase
equiripple
firls

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized Frequency (×π rad/sample)

A
m

pl
itu

de

Zero−phase Response

For the second example, design a 35th-order type IV Hilbert transformer.

d = fdesign.hilbert('n,tw',35,0.1);

2-618

fdesign.hilbert

designmethods(d);
hd = design(d,'equiripple');
hf = fvtool(hd,'magnitudedisplay','zero-phase',...
'frequencyrange')
set(hf,'frequencyrange','[-fs/2, fs/2)')

Here is the view from FVTool.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized Frequency (×π rad/sample)

A
m

pl
itu

de

Zero−phase Response

Finally, design a minimum-order transformer that has a sampling
frequency of 100 Hz — add Fs as an input argument in Hz.

d = fdesign.hilbert('tw,ap',1,0.1,100); % Fs = 100 Hz.
designmethods(d);
hd = design(d,'equiripple');
fvtool(hd,'magnitudedisplay','zero-phase');

2-619

fdesign.hilbert

set(hf,'frequencyrange','[-fs/2, fs/2)')

FVTool returns this plot.

0 5 10 15 20 25 30 35 40 45

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Frequency (Hz)

A
m

pl
itu

de

Zero−phase Response

See Also design, fdesign, setspecs

2-620

fdesign.interpolator

Purpose Interpolator filter specification

Syntax d = fdesign.interpolator(l)
d = fdesign.interpolator(l,design)
d = fdesign.interpolator(l,design,spec)
d =
fdesign.interpolator(...,spec,specvalue1,specvalue2,...)
d = fdesign.interpolator(...,fs)
d = fdesign.interpolator(...,magunits)

Description d = fdesign.interpolator(l) constructs an interpolating filter
specification object d, applying default values for the properties fp,
fst, ap, and ast and using the default design, Nyquist. Specify l, the
interpolation factor, as an integer. When you omit the input argument
l, fdesign.interpolator sets the interpolation factor l to 3.

Using fdesign.interpolator with a design method generates an
mfilt object.

d = fdesign.interpolator(l,design) constructs an interpolator
with the interpolation factor l and the response you specify in design.
By using the design input argument, you can choose the sort of filter
that results from using the interpolator specifications object. design
accepts the following strings that define the filter response.

design String Description

arbmag Sets the response for the interpolator
specifications object to Arbitrary Magnitude.

arbmangnphase Sets the response for the interpolator
specifications object to Arbitrary Magnitude
and Phase.

bandpass Sets the response for the interpolator
specifications object to bandpass.

bandstop Sets the response for the interpolator
specifications object to bandstop.

2-621

fdesign.interpolator

design String Description

cic Sets the response for the interpolator
specifications object to CIC filter.

ciccomp Sets the response for the interpolator
specifications object to CIC compensator.

halfband Sets the response for the interpolator
specifications object to halfband.

highpass Sets the response for the interpolator
specifications object to highpass.

isinclp Sets the response for the interpolator
specifications object to inverse-sinc lowpass.

lowpass Sets the response for the interpolator
specifications object to lowpass.

nyquist Sets the response for the interpolator
specifications object to Nyquist.

d = fdesign.interpolator(l,design,spec) constructs object d and
sets its Specification property to spec. Entries in the spec string
represent various filter response features, such as the filter order, that
govern the filter design. Valid entries for spec depend on the design
type of the specifications object.

When you add the spec input argument, you must also add the design
input argument.

Because you are designing multirate filters, the specification strings
available are not the same as the specifications for designing single-rate
filters with such design methods as fdesign.lowpass. The strings
are not case sensitive.

Notice that the interpolation factor l is not in the specification strings.
Various design types provide different specifications, as shown in this
table.

2-622

fdesign.interpolator

Design Type Valid Specification Strings

Arbitrary
Magnitude

• n,b,f,a

• n,f,a (default string)

Arbitrary
Magnitude
and Phase

• n,b,f,h

• n,f,h (default string)

Bandpass • fst1,fp1,fp2,fst2,ast1,ap,ast2 (default
string)

• n,fc1,fc2

• n,fst1,fp1,fp2,fst2

Bandstop • n,fc1,fc2

• n,fp1,fst1,fst2,fp2

• fp1,fst1,fst2,fp2,ap1,ast,ap2 (default string)

CIC • fp,ast (default and only string)

CIC
Compensator

• fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fst,ap,ast

Halfband • tw,ast (default string)

• n,tw

• n

• n,ast

2-623

fdesign.interpolator

Design Type Valid Specification Strings

Highpass • fst,fp,ast,ap (default string)

• n,fc

• n,fc,ast,ap

• n,fp,ast,ap

• n,fst,fp,ap

• n,fst,fp,ast

• n,fst,ast,ap

• n,fst,fp

Inverse-Sinc
Lowpass

• fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fst,ap,ast

• n,fp,ap,ast

• n,fp,fst

Lowpass • fp,fst,ap,ast (default string)

Nyquist • tw,ast (default string)

• n,tw

• n

• n,ast

The string entries are defined as follows:

• a — magnitude response at the frequencies in f. Usually this is a
vector of values with the same length as f.

• ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

2-624

fdesign.interpolator

• ap1 — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass1. Bandpass and bandstop filters
use this option.

• ap2 — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass2. Bandpass and bandstop filters
use this option.

• ast — attenuation in the first stop band in decibels (the default
units). Also called Astop.

• ast1 — attenuation in the first stop band in decibels (the default
units). Also called Astop1. Bandpass and bandstop filters use this
option.

• ast2 — attenuation in the first stop band in decibels (the default
units). Also called Astop2. Bandpass and bandstop filters use this
option.

• b — number of filter bands.

• f — vector of specific frequency points in the filter response. In
combination with a, this specifies the desired filter response.

• fc1 — cutoff frequency for the point 3 dB point below the passband
value for the first cutoff. Specified in normalized frequency units.
Bandpass and bandstop filters use this option.

• fc2 — cutoff frequency for the point 3 dB point below the passband
value for the second cutoff. Specified in normalized frequency units.
Bandpass and bandstop filters use this option.

• fp1 — frequency at the start of the pass band. Specified in
normalized frequency units. Also called Fpass1. Bandpass and
bandstop filters use this option.

• fp2 — frequency at the end of the pass band. Specified in normalized
frequency units. Also called Fpass2. Bandpass and bandstop filters
use this option.

2-625

fdesign.interpolator

• fst1 — frequency at the end of the first stop band. Specified in
normalized frequency units. Also called Fstop1. Bandpass and
bandstop filters use this option.

• fst2 — frequency at the start of the second stop band. Specified
in normalized frequency units. Also called Fstop2. Bandpass and
bandstop filters use this option.

• h — complex frequency response values.

• n — filter order.

• tw — width of the transition region between the pass and stop bands.
Halfband, Hilbert, and Nyquist filters use this option.

d =
fdesign.interpolator(...,spec,specvalue1,specvalue2,...)
constructs an object d and sets its specifications at construction time.

d = fdesign.interpolator(...,fs) adds the argument fs, specified in
Hz, to define the sampling frequency to use. In this case, all frequencies
in the specifications are in Hz as well.

d = fdesign.interpolator(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of

• linear — specify the magnitude in linear units.

• dB — specify the magnitude in dB (decibels).

• squared — specify the magnitude in power units.

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples These examples show how to construct interpolating filter specification
objects. First, create a default specifications object without using input
arguments except for the interpolation factor l.

2-626

fdesign.interpolator

l = 2;

d = fdesign.interpolator(2)

d =

MultirateType: 'Interpolator'

Response: 'Nyquist'

DecimationFactor: 2

Specification: 'TW,Ast'

Description: {'Transition Width';'

Stopband Attenuation (dB)'}

NormalizedFrequency: true

TransitionWidth: 0.1

Astop: 80

Now create an object by passing a specification string
’fst1,fp1,fp2,fst2,ast1,ap,ast2’ and a design — the resulting
object uses default values for all of the filter specifications. You must
provide the design input argument when you include a specification.

d=fdesign.interpolator(8,'bandpass','fst1,fp1,fp2,fst2,...
ast1,ap,ast2')

d =

MultirateType: 'Interpolator'
Response: 'Bandpass'

DecimationFactor: 8
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'

Description: {7x1 cell}
NormalizedFrequency: true

Fstop1: 0.35
Fpass1: 0.45
Fpass2: 0.55
Fstop2: 0.65
Astop1: 60
Apass: 1

2-627

fdesign.interpolator

Astop2: 60

Create another interpolating filter object, passing the specification
values to the object rather than accepting the default values for, in this
case, fp,fst,ap,ast.

d=fdesign.interpolator(3,'lowpass',.45,0.55,.1,60)

d =

MultirateType: 'Interpolator'
Response: 'Lowpass'

DecimationFactor: 3
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

Fpass: 0.45
Fstop: 0.55
Apass: 0.1
Astop: 60

Now pass the filter specifications that correspond to the specifications
— n,fc,ap,ast.

d=fdesign.interpolator(3,'ciccomp',1,2,'n,fc,ap,ast',...
20,0.45,.05,50)

d =

MultirateType: 'Interpolator'
Response: 'CIC Compensator'

DecimationFactor: 3
Specification: 'N,Fc,Ap,Ast'

Description: {4x1 cell}
NumberOfSections: 2

DifferentialDelay: 1
NormalizedFrequency: true

FilterOrder: 20

2-628

fdesign.interpolator

Fcutoff: 0.45
Apass: 0.05
Astop: 50

With the specifications object in your workspace, design an interpolator
using the kaiserwin design method.

hm = design(d,'kaiserwin')

Pass a new specification type for the filter, specifying the filter order.

d = fdesign.interpolator(5,'CIC','fp,ast',0.55,55)

d =

MultirateType: 'Interpolator'

Response: 'CIC'

DecimationFactor: 5

Specification: 'Fp,Aa'

Description: {'Passband Frequency';'Stopband Attenuation(dB)'}

DifferentialDelay: 1

NormalizedFrequency: true

Fpass: 0.55

In this example, you specify a sampling frequency as the right most
input argument. Here, it is set to 1000 Hz.

d=fdesign.interpolator(8,'bandpass','fst1,fp1,fp2,fst2,...
ast1,ap,ast2',0.25,0.35,.55,.65,50,.05,1e3)

d =

MultirateType: 'Interpolator'
Response: 'Bandpass'

DecimationFactor: 8
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'

Description: {7x1 cell}
NormalizedFrequency: false

2-629

fdesign.interpolator

Fs: 1000
Fstop1: 0.25
Fpass1: 0.35
Fpass2: 0.55
Fstop2: 0.65
Astop1: 50
Apass: 0.05

Astop2: 50

In this, the last example, use the linear option for the filter specification
object and specify the stopband ripple attenuation in linear form.

d = fdesign.interpolator(4,'lowpass','n,fst,ap,ast',15,0.55,.05,...

1e3,'linear') % 1e3 = 60dB.

d =

Response: 'Lowpass interpolator'

Specification: 'TW,Ast'

Description: {'Transition Width';'Stopband Attenuation (dB)'}

DecimationFactor: 4

NormalizedFrequency: false

Fs: 500

TransitionWidth: 0.1

Astop: 60

Design the filter and display the magnitude response in FVTool.

designmethods(d);
design(d,'equiripple'); % Opens FVTool.

Now design a CIC interpolator for a signal sampled at 19200 Hz.
Specify the differential delay of 2 and set the attenuation of information
beyond 50 Hz to be at least 80 dB.

Notice that the filter object sampling frequency is (l x fs) where fs is
the sampling frequency of the input signal.

dd = 2; % Differential delay.

2-630

fdesign.interpolator

fp = 50; % Passband of interest.

ast = 80; % Minimum attenuation of alias components in passband.

fs = 600; % Sampling frequency for input signal.

l = 32; % Interpolation factor.

d = fdesign.interpolator(l,'cic',dd,'fp,ast',fp,ast,l*fs);

d =

MultirateType: 'Interpolator'

InterpolationFactor: 32

Response: 'CIC'

Specification: 'Fp,Ast'

Description: {'Passband Frequency';'Imaging Attenuation(dB)'}

DifferentialDelay: 2

NormalizedFrequency: false

Fs: 19200

Fs_in: 600

Fs_out: 19200

Fpass: 50

Astop: 80

hm = design(d); %Use the default design method.

hm

hm =

FilterStructure: 'Cascaded Integrator-Comb Interpolator'

Arithmetic: 'fixed'

DifferentialDelay: 2

NumberOfSections: 2

InterpolationFactor: 32

PersistentMemory: false

InputWordLength: 16

InputFracLength: 15

FilterInternals: 'FullPrecision'

2-631

fdesign.interpolator

This next example results in a minimum-order CIC compensator that
interpolates by 4 and compensates for the droop in the passband for the
CIC filter hm from the previous example.

nsecs = hm.numberofsections;
d = fdesign.interpolator(4,'ciccomp',dd,nsecs,...
50,100,0.1,80,fs);
hmc = design(d,'equiripple');
hmc.arithmetic = 'fixed';

hmc is designed to compensate for hm. To see the effect of the
compensating CIC filter, use FVTool to analyze both filters individually
and include the compound filter response by cascading hm and hmc.

fvtool(hmc,hm,cascade(hmc,hm),'fs',[fs,l*fs,l*fs],...
'showreference','off');
legend('CIC Compensator','CIC Interpolator',...
'Overall Response');

FVTool returns with this plot.

2-632

fdesign.interpolator

0 1 2 3 4 5 6 7 8 9
−20

0

20

40

60

80

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

CIC Compensator
CIC Interpolator
Overall Response

For the third example, use fdesign.interpolator to design a
minimum-order Nyquist interpolator that uses a Kaiser window. For
comparison, design a multistage interpolator as well and compare the
responses.

l = 15; % Set the interpolation factor and the Nyquist band.

tw = 0.05; % Specify the normalized transition width.

ast = 40; % Set the minimum stopband attenuation in dB.

d = fdesign.interpolator(l,'nyquist',l,tw,ast);

hm = design(d,'kaiserwin');

hm2 = design(d,'multistage'); % Design the multistage interpolator.

fvtool(hm,hm2);

legend('Kaiser Window','Multistage')

2-633

fdesign.interpolator

FVTool shows both responses.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−70

−60

−50

−40

−30

−20

−10

0

10

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Kaiser Window
Multistage

Design a lowpass interpolator for an interpolation factor of 8. Compare
the single-stage equiripple design to a multistage design with the same
interpolation factor.

l = 8; % Interpolation factor.
d = fdesign.interpolator(l,'lowpass');
hm(1) = design(d,'equiripple');
% Use halfband filters whenever possible.
hm(2) = design(d,'multistage','usehalfbands',true);
fvtool(hm);
legend('Single-Stage Equiripple','Multistage')

2-634

fdesign.interpolator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Single−Stage Equiripple
Multistage

See Also fdesign, fdesign.arbmag, fdesign.arbmagnphase,
fdesign.decimator, fdesign.rsrc, setspecs

2-635

fdesign.isinclp

Purpose Inverse-sinc filter specification

Syntax d = fdesign.isinclp
d = fdesign.isinclp(spec)
d = fdesign.isinclp(spec,specvalue1,specvalue2,...)
d = fdesign.isinclp(specvalue1,specvalue2,specvalue3,

specvalue4)
d = fdesign.isinclp(...,fs)
d = fdesign.isinclp(...,magunits)

Description d = fdesign.isinclp constructs an inverse-sinc lowpass filter
specification object d, applying default values for the properties tw and
ast.

Using fdesign.isinclp with a design method generates a dfilt object.

d = fdesign.isinclp(spec) constructs object d and sets its
’Specification’ to spec. Entries in the spec string represent various
filter response features, such as the filter order, that govern the filter
design. Valid entries for spec are shown below. The strings are not
case sensitive.

• fp,fst,ap,ast (default spec)

• n,fst,ap,ast

• n,fp,fst

The string entries are defined as follows:

• ast — attenuation in the first stop band in decibels (the default
units). Also called Astop.

• ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

• fp — frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass.

2-636

fdesign.isinclp

• fst — frequency at the end of the first stop band. Specified in
normalized frequency units. Also called Fstop.

• n — filter order.

The filter design methods that apply to an inverse-sinc lowpass filter
specification object change depending on the Specification string.
Use designmethods to determine which design method applies to an
object and its specification string.

d = fdesign.isinclp(spec,specvalue1,specvalue2,...)
constructs an object d and sets its specifications at construction time.

d =
fdesign.isinclp(specvalue1,specvalue2,specvalue3,specvalue4)
constructs an object d assuming the default Specification
property string fp,fst,ap,ast, using the values you provide in
specvalue1,specvalue2, specvalue3, and specvalue4.

d = fdesign.isinclp(...,fs) adds the argument fs, specified in Hz
to define the sampling frequency to use. In this case, all frequencies in
the specifications are in Hz as well.

d = fdesign.isinclp(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of

• linear — specify the magnitude in linear units

• dB — specify the magnitude in dB (decibels)

• squared — specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples Pass the specifications for the default specification — fp,fst,ap,ast
— as input arguments to the specifications object.

2-637

fdesign.isinclp

d = fdesign.isinclp(.4,.5,.01,40);
designmethods(d)
hd = design(d,'equiripple');
fvtool(hd);

FVTool shows the classic inverse-sinc filter response.

See Also fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.halfband,
fdesign.highpass, fdesign.lowpass, fdesign.nyquist

2-638

fdesign.lowpass

Purpose Lowpass filter specification

Syntax d = fdesign.lowpass
d = fdesign.lowpass(spec)
d = fdesign.lowpass(spec,specvalue1,specvalue2,...)
d = fdesign.lowpass(specvalue1,specvalue2,specvalue3,

specvalue4)
d = fdesign.lowpass(...,fs)
d = fdesign.lowpass(...,magunits)

Description d = fdesign.lowpass constructs a lowpass filter specification object d,
applying default values for the properties fp, fst, ap, and ast.

Using the fdesign.lowpass specification object with a design method
generates a dfilt object.

d = fdesign.lowpass(spec) constructs object d and sets its
’Specification’ property to the string in spec. Entries in the spec
string represent various filter response features, such as the filter order,
that govern the filter design. Valid entries for spec are shown below.
The strings are not case sensitive.

• fp,fst,ap,ast (default spec)

• n,f3db

• n,f3db,ap

• n,f3db,ap,ast

• n,f3db,ast

• n,f3db,fst

• n,fc

• n,fc,ap,ast

• n,fp,ap

• n,fp,ap,ast

• n,fp,fst,ap

2-639

fdesign.lowpass

• n,fp,f3db

• n,fp,fst

• n,fp,fst,ap

• n,fp,fst,ast

• n,fst,ap,ast

• n,fst,ast

• nb,na,fp,fst

The string entries are defined as follows:

• ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

• ast — attenuation in the stop band in decibels (the default units).
Also called Astop.

• f3db — cutoff frequency for the point 3 dB point below the passband
value. Specified in normalized frequency units.

• fc — cutoff frequency for the point 3 dB point below the passband
value. Specified in normalized frequency units.

• fp — frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass.

• fst — frequency at the end of the stop band. Specified in normalized
frequency units. Also called Fstop.

• n — filter order.

• na and nb are the order of the denominator and numerator.

Graphically, the filter specifications look similar to those shown in the
following figure.

2-640

fdesign.lowpass

Regions between specification values like fp and fst are transition
regions where the filter response is not explicitly defined.

The filter design methods that apply to a lowpass filter specification
object change depending on the Specification string. Here are all the
valid strings for lowpass filter specification objects.

• fp,fst,ap,ast

• n,f3dB

• n,f3dB,Ap

• n,f3dB,Ap,Ast

• n,f3dB,Ast

• n,f3dB, Fst

• n,fc

• n,fc,Ap,Ast

• n,fp,ap

• n,fp,ap,ast

• n,fp,f3db

• n,fp,fst

• n,fp,fst,ap

2-641

fdesign.lowpass

• n,fp,fst,ast

• n,fst,ap,ast

• n,fst,ast

• n,fp,ap,ast

• nb,na,fp,fst

d = fdesign.lowpass(spec,specvalue1,specvalue2,...)
constructs an object d and sets its specification values at construction
time using specvalue1, specvalue2, and so on for all of the specification
variables in spec.

d =
fdesign.lowpass(specvalue1,specvalue2,specvalue3,specvalue4)
constructs an object d with values for the default Specification
property string fp,fst,ap,ast using the specifications you provide as
input arguments specvalue1,specvalue2,specvalue3,specvalue4.

d = fdesign.lowpass(...,fs) adds the argument fs, specified in Hz
to define the sampling frequency to use. In this case, all frequencies in
the specifications are in Hz as well.

d = fdesign.lowpass(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of

• linear — specify the magnitude in linear units

• dB — specify the magnitude in dB (decibels)

• squared — specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

2-642

fdesign.lowpass

Examples These examples how to construct a lowpass filter specification object.
First, create a default lowpass filter object without using input
arguments.

d=fdesign.lowpass

d =

Response: 'Minimum-order lowpass'
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

Fpass: 0.4500
Fstop: 0.5500
Apass: 1
Astop: 60

Now create an object by passing specifications for the passband and
stopband edge frequencies and the passband and stopband attenuations
— the resulting object uses the input values for fp, fst, ap, and ast.

hs = fdesign.lowpass(.4,.5,1,80);
hs

hs =

Response: 'Minimum-order lowpass'
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

Fpass: 0.4000
Fstop: 0.5000
Apass: 1
Astop: 80

Create another filter object, passing the values for n and fc rather
than accepting the default values. Notice that you can add include the
sampling frequency fs as the final input argument.

2-643

fdesign.lowpass

d=fdesign.lowpass('n,fc',10, 9600,48000)

d =

Response: 'Lowpass with cutoff'
Specification: 'N,Fc'

Description: {2x1 cell}
NormalizedFrequency: false

Fs: 48000
FilterOrder: 10

Fcutoff: 9600

Finally, pass values for the filter specifications that match the default
Specification string entries — fp = 0.4, fst = 0.5, ast = 80 and
ap = 1.0. Add the sampling frequency on the end.

hs = fdesign.lowpass(.4,.5,1,80)

hs =

Response: 'Minimum-order lowpass'
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

Fpass: 0.4000
Fstop: 0.5000
Apass: 1
Astop: 80

Finally, the next examples add the sampling frequency specification in
Hz, and then the magunits option.

hs = fdesign.lowpass('N,Fp,Ap', 10, 9600, .5, 48000);

and

hsmag = fdesign.lowpass(.4, .5, .98, .02, 'squared');

2-644

fdesign.lowpass

Using the last example filter object, create a highpass filter.

hd = design(hsmag,'cheby1';

See Also fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.highpass

2-645

fdesign.notch

Purpose Notch filter specification

Syntax d = fdesign.notch(specstring, value1, value2, ...)
d = fdesign.notch(n,f0,q)
d = fdesign.notch(...,Fs)
d = fdesign.notch(...,MAGUNITS)

Description d = fdesign.notch(specstring, value1, value2, ...) constructs a
notch filter specification object d, with a specification string set to
specstring and values provided for all members of the specstring.
The possible specification strings, which are not case sensitive, are
listed as follows:

• ’N,F0,Q’ (default)

• ’N,F0,Q,Ap’

• ’N,F0,Q,Ast’

• ’N,F0,Q,Ap,Ast’

• ’N,F0,BW’

• ’N,F0,BW,Ap’

• ’N,F0,BW,Ast’

• ’N,F0,BW,Ap,Ast’

where the variables are defined as follows:

• N - Filter Order (must be even)

• F0 - Center Frequency

• Q - Quality Factor

• BW - 3-dB Bandwidth

• Ap - Passband Ripple (decibels)

• Ast - Stopband Attenuation (decibels)

2-646

fdesign.notch

Different specification strings, resulting in different specification
objects, may have different design methods available. Use the function
designmethods to get a list of design methods available for a given
specification. For example:

>> d = fdesign.notch('N,F0,Q,Ap',6,0.5,10,1);
>> designmethods(d)

Design Methods for class fdesign.notch (N,F0,Q,Ap):

cheby1

d = fdesign.notch(n,f0,q) constructs a notch filter specification
object using the default specstring ('N,F0,Q') and setting the
corresponding values to n, f0, and q.

By default, all frequency specifications are assumed to be in normalized
frequency units. All magnitude specifications are assumed to be in
decibels.

d = fdesign.notch(...,Fs) constructs a notch filter specification object
while providing the sampling frequency of the signal to be filtered. Fs
must be specified as a scalar trailing the other values provided. If you
specify an Fs, it is assumed to be in Hz, as are all the other frequency
values provided.

d = fdesign.notch(...,MAGUNITS) constructs a notch filter specification
while providing the units for any magnitude specification given.
MAGUNITS can be one of the following: 'linear', 'dB', or 'squared'.
If this argument is omitted, 'dB' is assumed. The magnitude
specifications are always converted and stored in decibels regardless
of how they were specified. If Fs is provided, MAGUNITS must follow Fs
in the input argument list.

Examples Design a notching filter with a passband ripple of 1 dB.

d = fdesign.notch('N,F0,Q,Ap',6,0.5,10,1);

2-647

fdesign.notch

Hd = design(d);
fvtool(Hd)

This produces a filter with the magnitude response shown in the
following figure.

See Also fdesign, fdesign.peak

2-648

fdesign.nyquist

Purpose Nyquist filter specification

Syntax d = fdesign.nyquist
d = fdesign.nyquist(l,spec)
d = fdesign.nyquist(l,spec,specvalue1,specvalue2,...)
d = fdesign.nyquist(l,specvalue1,specvalue2)
d = fdesign.nyquist(...,fs)
d = fdesign.nyquist(...,magunits)

Description d = fdesign.nyquist constructs a Nyquist or L-band filter specification
object d, applying default values for the properties tw and ast. By
default, the filter object designs a minimum-order half-band (L=2)
Nyquist filter.

Using fdesign.nyquist with a design method generates a dfilt object.

d = fdesign.nyquist(l,spec) constructs object d and sets its
Specification property to spec. Use l to specify the desired value for
L. L = 2 design a half-band FIR filter, L = 3 a third-band FIR filter, and
so on. When you use a Nyquist filter as an interpolator, l or L is the
interpolation factor. The first input argument must be l when you are
not using the default syntax d = fdesign.nyquist.

Entries in the spec string represent various filter response features,
such as the filter order, that govern the filter design. Valid entries for
spec are shown below. The strings are not case sensitive.

• tw,ast (default spec)

• n,tw

• n

• n,ast

The string entries are defined as follows:

• ast — attenuation in the stop band in decibels (the default units).

• n — filter order.

2-649

fdesign.nyquist

• tw — width of the transition region between the pass and stop bands.
Specified in normalized frequency units.

The filter design methods that apply to an interpolating filter
specification object change depending on the Specification string.
Paired with each string in the following table are the design methods
for interpolating filter specification objects that use that string.

Specification String Applicable Design Method

tw,ast kaiserwin

n,tw kaiserwin

n window

n,ast kaiserwin

d = fdesign.nyquist(l,spec,specvalue1,specvalue2,...)
constructs an object d and sets its specification to spec, and the
specification values to specvalue1, specvalue2, and so on at
construction time.

d = fdesign.nyquist(l,specvalue1,specvalue2) constructs an
object d with the values you provide in l, specvalue1,specvalue2 as
the values for l, tw and ast.

d = fdesign.nyquist(...,fs) adds the argument fs, specified in Hz
to define the sampling frequency to use. In this case, all frequencies in
the specifications are in Hz as well.

d = fdesign.nyquist(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of

• linear — specify the magnitude in linear units

• dB — specify the magnitude in dB (decibels)

• squared — specify the magnitude in power units

2-650

fdesign.nyquist

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Limitations of the Nyquist fdesign Object

Using Nyquist filter specification objects with the equiripple design
method imposes a few limitations on the resulting filter, caused by the
equiripple design algorithm.

• When you request a minimum-order design from equiripple with
your Nyquist object, the design algorithm might not converge and
can fail with a filter convergence error.

• When you specify the order of your desired filter, and use the
equiripple design method, the design might not converge.

• Generally, the following specifications, alone or in combination with
one another, can cause filter convergence problems with Nyquist
objects and the equiripple design method.

- very high order

- small transition width

- very large stopband attenuation

Note that halfband filters (filters where band = 2) do not exhibit
convergence problems.

When convergence issues arise, either in the cases mentioned or in
others, you might be able to design your filter with the kaiserwin
method.

In addition, if you use Nyquist objects to design decimators or
interpolators (where the interpolation or decimation factor is not a
prime number), using multistage filter designs might be your best
approach.

2-651

fdesign.nyquist

Examples These examples show how to construct a Nyquist filter specification
object. First, create a default specifications object without using input
arguments.

d=fdesign.nyquist

d =

Response: 'Nyquist'

Specification: 'TW,Ast'

Description: {'Transition Width';'Stopband Attenuation (dB)'}

Band: 2

NormalizedFrequency: true

TransitionWidth: 0.1

Astop: 80

Now create an object by passing a specification type string ’n,ast’ — the
resulting object uses default values for n and ast.

d=fdesign.nyquist(2,'n,ast')

d =

Response: 'Nyquist'

Specification: 'N,Ast'

Description: {'Filter Order';'Stopband Attenuation (dB)'}

Band: 2

NormalizedFrequency: true

FilterOrder: 10

Astop: 80

Create another Nyquist filter object, passing the specification values to
the object rather than accepting the default values for n and ast.

d=fdesign.nyquist(3,'n,ast',42,80)

d =

2-652

fdesign.nyquist

Response: 'Nyquist'

Specification: 'N,Ast'

Description: {'Filter Order';'Stopband Attenuation (dB)'}

Band: 3

NormalizedFrequency: true

FilterOrder: 42

Astop: 80

Finally, pass the filter specifications that correspond to the default
Specification — tw,ast. When you pass only the values,
fdesign.nyquist assumes the default Specification string.

d = fdesign.nyquist(4,.01,80)

d =

Response: 'Nyquist'

Specification: 'TW,Ast'

Description: {'Transition Width';'Stopband Attenuation (dB)'}

Band: 4

NormalizedFrequency: true

TransitionWidth: 0.01

Astop: 80

Now design a Nyquist filter using the kaiserwin design method.

hd = design(d,'kaiserwin')

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x1005 double]

PersistentMemory: false

See Also fdesign, fdesign.interpolator, fdesign.halfband,
fdesign.interpolator, fdesign.rsrc

2-653

fdesign.octave

Purpose Octave filter specification

Syntax d = fdesign.octave(l)
d = fdesign.octave(l, MASK)
d = fdesign.octave(l, MASK, spec)
d = fdesign.octave(..., Fs)

Description d = fdesign.octave(l) constructs an octave filter specification object
d, with l bands per octave. The default value for l is 1.

d = fdesign.octave(l, MASK) constructs an octave filter specification
object d with l bands per octave and MASK specification for the FVTool.
The available values for mask are:

• 'class 0'

• 'class 1'

• 'class 2'

d = fdesign.octave(l, MASK, spec) constructs an octave filter
specification object d with l bands per octave, MASK specification for the
FVTool, and the spec specification string. The specification strings
available are:

• 'N, F0'

(not case sensitive), where:

• N is the filter order

• F0 is the center frequency.

The center frequency is typically specified in normalized frequency
units, unless a sampling frequency in Hz is included in the specification:
d = fdesign.octave(..., Fs). In this case, all frequencies must be
specified in Hz, with the center frequency falling between 20 Hz and
20 kHz (the audio range).

2-654

fdesign.octave

Examples Design an sixth order, octave-band class 0 filter with a center frequency
of 1000 Hz and, a sampling frequency of 44.1 kHz.

d = fdesign.octave(1,'Class 0','N,F0',6,1000,44100)
Hd = design(d)
fvtool(Hd)

The following figure shows the magnitude response plot of the filter.
The logarithmic scale for frequency is automatically set by FVTool for
the octave filters.

See Also fdesign

2-655

fdesign.parameq

Purpose Parametric equalizer filter specification

Syntax d = fdesign.parameq(spec, specvalue1, specvalue2, ...)
d = fdesign.parameq(... fs)

Description d = fdesign.parameq(spec, specvalue1, specvalue2, ...)
constructs a parametric equalizer filter design object, where spec is
a non-case sensitive specification string. The choices for spec are as
follows:

• 'F0, BW, BWp, Gref, G0, GBW, Gp' (minimum order default)

• 'F0, BW, BWst, Gref, G0, GBW, Gst'

• 'F0, BW, BWp, Gref, G0, GBW, Gp, Gst'

• 'N, F0, BW, Gref, G0, GBW'

• 'N, F0, BW, Gref, G0, GBW, Gp'

• 'N, F0 ,BW, Gref, G0, GBW, Gst'

• 'N, F0, BW, Gref, G0, GBW, Gp, Gst'

• 'N, Flow, Fhigh, Gref, G0, GBW'

• 'N, Flow, Fhigh, Gref, G0, GBW, Gp'

• 'N, Flow, Fhigh, Gref, G0, GBW, Gst'

• 'N, Flow, Fhigh, Gref, G0, GBW, Gp, Gst'

where the parameters are defined as follows:

• F0 — Center Frequency

• BW — Bandwidth

• BWp — Passband Bandwidth

• BWst — Stopband Bandwidth

• Gref — Reference Gain (decibels)

2-656

fdesign.parameq

• G0 — Center Frequency Gain (decibels)

• GBW — Gain at which Bandwidth (BW) is measured (decibels)

• Gp — Passband Gain (decibels)

• Gst — Stopband Gain (decibels)

• N — Filter Order

• Flow - Lower Frequency at Gain GBW

• Fhigh - Higher Frequency at Gain GBW

Regardless of the specification string chosen, there are some conditions
that apply to the specification parameters. These are as follows:

• Specifications for parametric equalizers must be given in decibels

• To boost the input signal, set G0 > Gref; to cut, set Gref > G0

• For boost: G0 > Gp > GBW > Gst > Gref; For cut: G0 < Gp < GBW
< Gst < Gref

• Bandwidth must satisfy: BWst > BW > BWp

d = fdesign.parameq(... fs) adds the input sampling frequency.
Fs must be specified as a scalar trailing the other numerical values
provided, and is assumed to be in Hz.

Examples Design a Chebyshev Type II parametric equalizer filter that cuts by
12 dB:

d = fdesign.parameq('N,Flow,Fhigh,Gref,G0,GBW,Gst',...
4,.3,.5,0,-12,-10,-1);

Hd = design(d,'cheby2');
fvtool(Hd)

The magnitude response is shown in the following figure:

2-657

fdesign.parameq

2-658

fdesign.peak

Purpose Peak filter specification

Syntax d = fdesign.peak(specstring, value1, value2, ...)
d = fdesign.peak(n,f0,q)
d = fdesign.peak(...,Fs)
d = fdesign.peak(...,MAGUNITS)

Description d = fdesign.peak(specstring, value1, value2, ...) constructs a
peaking filter specification object d, with a specification string set to
specstring and values provided for all members of the specstring.
The possible specification strings, which are not case sensitive, are
listed as follows:

• ’N,F0,Q’ (default)

• ’N,F0,Q,Ap’

• ’N,F0,Q,Ast’

• ’N,F0,Q,Ap,Ast’

• ’N,F0,BW’

• ’N,F0,BW,Ap’

• ’N,F0,BW,Ast’

• ’N,F0,BW,Ap,Ast’

where the variables are defined as follows:

• N - Filter Order (must be even)

• F0 - Center Frequency

• Q - Quality Factor

• BW - 3-dB Bandwidth

• Ap - Passband Ripple (decibels)

• Ast - Stopband Attenuation (decibels)

2-659

fdesign.peak

Different specification strings, resulting in different specification
objects, may have different design methods available. Use the function
designmethods to get a list of design methods available for a given
specification. For example:

>> d = fdesign.peak('N,F0,Q,Ap',6,0.5,10,1);
>> designmethods(d)

Design Methods for class fdesign.peak (N,F0,Q,Ap):

cheby1

d = fdesign.peak(n,f0,q) constructs a peaking filter specification
object using the default specstring ('N,F0,Q') and setting the
corresponding values to n, f0, and q.

By default, all frequency specifications are assumed to be in normalized
frequency units. All magnitude specifications are assumed to be in
decibels.

d = fdesign.peak(...,Fs) constructs a peak filter specification object
while providing the sampling frequency of the signal to be filtered. Fs
must be specified as a scalar trailing the other values provided. If you
specify an Fs, it is assumed to be in Hz, as all the other frequency
values provided.

d = fdesign.peak(...,MAGUNITS) constructs a notch filter specification
while providing the units for any magnitude specification given.
MAGUNITS can be one of the following: 'linear', 'dB', or 'squared'.
If this argument is omitted, 'dB' is assumed. The magnitude
specifications are always converted and stored in decibels regardless
of how they were specified. If Fs is provided, MAGUNITS must follow Fs
in the input argument list.

Examples Design a Chebyshev Type II peaking filter with a stopband attenuation
of 80 dB:

2-660

fdesign.peak

d = fdesign.peak('N,F0,BW,Ast',8,.65,.02,80);
Hd = design(d,'cheby2');
fvtool(Hd)

This design produces a filter with the magnitude response shown in
the following figure.

See Also fdesign, fdesign.notch

2-661

fdesign.rsrc

Purpose Rational-factor sample-rate converter specification

Syntax d = fdesign.rsrc(l,m)
d = fdesign.rsrc(...,design)
d = fdesign.rsrc(...,design,spec)
d = fdesign.rsrc(...,spec,specvalue1,specvalue2,...)
d = fdesign.rsrc(...,fs)
d = fdesign.rsrc(...,magunits)

Description d = fdesign.rsrc(l,m) constructs a rational-factor sample-rate
convertor filter specification object d, applying default values for the
properties tw and ast and using the default design, Nyquist. Specify l
and m, the interpolation and decimation factors, as integers.

l/m is the rational-factor for the rate change. When you omit the input
argument l or m or both, fdesign.rsrc sets the values to defaults —
the interpolation factor (if omitted) to 3 and the decimation factor (if
omitted) to 2. The default rate change factor is 3/2 .

Using fdesign.rsrc with a design method generates an mfilt object.

d = fdesign.rsrc(...,design) constructs an rational-factor
sample-rate converter with the interpolation factor l, decimation factor
m, and the response you specify in design. Using the design input
argument lets you choose the sort of filter that results from using the
rational-factor sample-rate converter specifications object. design
accepts the following strings that define the filter response.

design String Description

arbmag Sets the design for the rational-factor
sample-rate converter specifications object to
Arbitrary Magnitude.

arbmagnphase Sets the design for the rational-factor
sample-rate converter specifications object to
Arbitrary Magnitude and Phase.

2-662

fdesign.rsrc

design String Description

bandpass Sets the design for the rational-factor
sample-rate converter specifications object
to bandpass.

bandstop Sets the design for the rational-factor
sample-rate converter specifications object
to bandstop.

cic Sets the design for the rational-factor
sample-rate converter specifications object
to CIC filter.

ciccomp Sets the design for the rational-factor
sample-rate converter specifications object
to CIC compensator.

halfband Sets the design for the rational-factor
sample-rate converter specifications object
to halfband.

highpass Sets the design for the rational-factor
sample-rate converter specifications object
to highpass.

isinclp Sets the design for the rational-factor
sample-rate converter specifications object to
inverse-sinc lowpass.

lowpass Sets the design for the rational-factor
sample-rate converter specifications object
to lowpass.

nyquist Sets the design for the rational-factor
sample-rate converter specifications object
to Nyquist.

d = fdesign.rsrc(...,design,spec) constructs object d and sets its
Specification property to spec. Entries in the spec string represent
various filter response features, such as the filter order, that govern

2-663

fdesign.rsrc

the filter design. Valid entries for spec depend on the design type of
the specifications object.

When you add the spec input argument, you must also add the design
input argument.

Because you are designing multirate filters, the specification strings
available are not the same as the specifications for designing single-rate
filters with such design methods as fdesign.lowpass. The strings
are not case sensitive.

Notice that the interpolation factor l is not in the specification strings.
Various design types provide different specifications. as shown in this
table. In the third column, you see the filter design methods that apply
to specifications objects that use the specification string in column two.

Design Type Valid Specification Strings

Arbitrary
Magnitude

• n,f,a (default string)

• n,b,f,a

Arbitrary
Magnitude
and Phase

• n,f,h (default string)

• n,b,f,h

Bandpass • fst1,fp1,fp2,fst2,ast1,ap,ast2 (default
string)

• n,fc1,fc2

• n,fst1,fp1,fp2,fst2

Bandstop • n,fc1,fc2

• n,fp1,fst1,fst2,fp2

• fp1,fst1,fst2,fp2,ap1,ast,ap2 (default
string)

CIC • fp,ast (default and only string)

2-664

fdesign.rsrc

Design Type Valid Specification Strings

CIC
Compensator

• fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fst,ap,ast

Halfband • tw,ast (default string)

• n,tw

• n

• n,ast

Highpass • fst,fp,ast,ap (default string)

• n,fc

• n,fc,ast,ap

• n,fp,ast,ap

• n,fst,fp,ap

• n,fst,fp,ast

• n,fst,ast,ap

• n,fst,fp

Inverse-Sinc
Lowpass

• fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fp,fst

2-665

fdesign.rsrc

Design Type Valid Specification Strings

Lowpass • fp,fst,ap,ast (default string)

• n,fc

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fp,fst,ap

• n,fp,fst,ast

• n,fst,ap,ast

Nyquist • tw,ast (default string)

• n,tw

• n

• n,ast

The string entries are defined as follows:

• a — amplitude vector. Values in a define the filter amplitude at
frequency points you specify in f, the frequency vector. If you use a,
you must use f as well. Amplitude values must be real.

• ap — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass.

• ap1 — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass1. Bandpass and bandstop filters
use this option.

• ap2 — amount of ripple allowed in the pass band in decibels (the
default units). Also called Apass2. Bandpass and bandstop filters
use this option.

• ast — attenuation in the first stop band in decibels (the default
units). Also called Astop.

2-666

fdesign.rsrc

• ast1 — attenuation in the first stop band in decibels (the default
units). Also called Astop1. Bandpass and bandstop filters use this
option.

• ast2 — attenuation in the first stop band in decibels (the default
units). Also called Astop2. Bandpass and bandstop filters use this
option.

• b — number of bands in the multiband filter

• f — frequency vector. Frequency values in f specify locations where
you provide specific filter response amplitudes. When you provide f
you must also provide a.

• fc1 — cutoff frequency for the point 3 dB point below the passband
value for the first cutoff. Specified in normalized frequency units.
Bandpass and bandstop filters use this option.

• fc2 — cutoff frequency for the point 3 dB point below the passband
value for the second cutoff. Specified in normalized frequency units.
Bandpass and bandstop filters use this option.

• fp1 — frequency at the start of the pass band. Specified in
normalized frequency units. Also called Fpass1. Bandpass and
bandstop filters use this option.

• fp2 — frequency at the end of the pass band. Specified in normalized
frequency units. Also called Fpass2. Bandpass and bandstop filters
use this option.

• fst1 — frequency at the end of the first stop band. Specified in
normalized frequency units. Also called Fstop1. Bandpass and
bandstop filters use this option.

• fst2 — frequency at the start of the second stop band. Specified
in normalized frequency units. Also called Fstop2. Bandpass and
bandstop filters use this option.

• h — complex frequency response values.

• n — filter order.

2-667

fdesign.rsrc

• tw — width of the transition region between the pass and stop bands.
Both halfband and Nyquist filters use this option.

d = fdesign.rsrc(...,spec,specvalue1,specvalue2,...)
constructs an object d and sets its specifications at construction time.

d = fdesign.rsrc(...,fs) adds the argument fs, specified in Hz, to
define the sampling frequency to use. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.rsrc(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits
can be one of

• linear — specify the magnitude in linear units.

• dB — specify the magnitude in dB (decibels).

• squared — specify the magnitude in power units.

When you omit the magunits argument, fdesign assumes that all
magnitudes are in decibels. Note that fdesign stores all magnitude
specifications in decibels (converting to decibels when necessary)
regardless of how you specify the magnitudes.

Examples This series of examples demonstrates progressively more complete
techniques for creating rational sample-rate change filters. First, pass
the filter design specifications directly to the Nyquist design type. Then
use kaiserwin, one of the valid design methods, to design the rate
change filter.

d = fdesign.rsrc(5,3,'nyquist',5,.05,40);
designmethods(d)
hm = design(d,'kaiserwin'); % Use Kaiser window to design
rate changer.

For this example, specify the filter order (12) when you create the
specifications object d.

2-668

fdesign.rsrc

d = fdesign.rsrc(5,3,'nyquist',5,'n,tw',12)

Expand the input arguments by specify a sampling frequency for the
filter. Recall that the sampling frequency for rate changers refers to the
input sample rate times the interpolation factor.

d = fdesign.rsrc(5,3,'nyquist',5,'n,tw',12,0.1,5)
designmethods(d);
design(d,'equiripple'); % Opens FVTool.

Specify a stopband ripple in linear units.

d = fdesign.rsrc(4,7,'nyquist',5,'tw,ast',.1,1e-3,5,...
'linear') % 1e-3 = 60dB attenuation in the stopband.

See Also design, designmethods, fdesign.decimator, fdesign.interpolator,
setspecs, fdesign.arbmag, fdesign.arbmagnphase

2-669

fftcoeffs

Purpose Frequency-domain coefficients

Syntax c = fftcoeffs(hd)
c = fftcoeffs(ha)

Description c = fftcoeffs(hd) return the frequency-domain coefficients used
when filtering with the dfilt.fftfir object. c contains the coefficients

c = fftcoeffs(ha) return the frequency-domain coefficients used
when filtering with adaptfilt objects.

fftcoeffs applies to the following adaptive filter algorithms:

• adaptfilt.fdaf

• adaptfilt.pbfdaf

• adaptfilt.pbufdaf

• adaptfilt.ufdaf

Examples This example demonstrates returning the FFT coefficients from the
discrete-time filter hd.

b = [0.05 0.9 0.05];
len = 50;
hd = dfilt.fftfir(b,len)

hd =

FilterStructure: 'Overlap-Add FIR'
Numerator: [0.0500 0.9000 0.0500]

BlockLength: 50
NonProcessedSamples: []

PersistentMemory: false

c=fftcoeffs(hd)

c =

2-670

fftcoeffs

1.0000
0.9920 + 0.1204i
0.9681 + 0.2386i
0.9289 + 0.3523i
0.8753 + 0.4594i
0.8084 + 0.5580i
0.7297 + 0.6464i
0.6408 + 0.7233i
0.5435 + 0.7874i
0.4398 + 0.8381i
0.3317 + 0.8747i
0.2211 + 0.8971i
0.1099 + 0.9054i

0 + 0.9000i
-0.1070 + 0.8815i
-0.2097 + 0.8506i
-0.3066 + 0.8084i
-0.3967 + 0.7558i
-0.4790 + 0.6939i
-0.5528 + 0.6240i
-0.6176 + 0.5472i
-0.6730 + 0.4645i
-0.7185 + 0.3771i
-0.7541 + 0.2860i
-0.7796 + 0.1921i
-0.7949 + 0.0965i
-0.8000
-0.7949 - 0.0965i
-0.7796 - 0.1921i
-0.7541 - 0.2860i
-0.7185 - 0.3771i
-0.6730 - 0.4645i
-0.6176 - 0.5472i
-0.5528 - 0.6240i
-0.4790 - 0.6939i
-0.3967 - 0.7558i

2-671

fftcoeffs

-0.3066 - 0.8084i
-0.2097 - 0.8506i
-0.1070 - 0.8815i

0 - 0.9000i
0.1099 - 0.9054i
0.2211 - 0.8971i
0.3317 - 0.8747i
0.4398 - 0.8381i
0.5435 - 0.7874i
0.6408 - 0.7233i
0.7297 - 0.6464i
0.8084 - 0.5580i
0.8753 - 0.4594i
0.9289 - 0.3523i
0.9681 - 0.2386i
0.9920 - 0.1204i

Similarly, you can use fftcoeffs with the adaptive filters algorithms
listed above. Start by constructing an adaptive filter ha.

d = 16; % Number of samples of delay.

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel.

a = [1 -0.7]; % Denominator coefficients of channel.

ntr= 1000; % Number of iterations.

s = sign(randn(1,ntr+d)) +...

j*sign(randn(1,ntr+d)); % Baseband QPSK signal.

n = 0.1*(randn(1,ntr+d) + j*randn(1,ntr+d)); % Noise signal.

r = filter(b,a,s)+n; % Received signal.

x = r(1+d:ntr+d); % Input signal (received signal).

d = s(1:ntr); % Desired signal (delayed QPSK signal).

del = 1; % Initial FFT input powers.

mu = 0.1; % Step size.

lam = 0.9; % Averaging factor.

d = 8; % Block size.

ha = adaptfilt.pbufdaf(32,mu,1,del,lam,n);

Here are the coefficients before you filter a signal.

2-672

fftcoeffs

c=fftcoeffs(ha)

c =

Columns 1 through 13

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

Columns 14 through 16

0 0 0

0 0 0

0 0 0

0 0 0

Filtering a signal y produces complex nonzero coefficients that you use
fftcoeffs to see.

[y,e] = filter(ha,x,d);

c=fftcoeffs(ha)

c =

Columns 1 through 4

0.1425 - 0.0957i 0.0487 - 0.0503i -0.0479 + 0.0315i 0.0769 - 0.0435i

0.7264 - 0.7605i -0.7423 - 0.6382i 0.1758 + 0.6679i 0.2018 - 0.6544i

0.1604 + 0.0747i -0.0709 + 0.2610i -0.1634 + 0.2929i -0.1488 + 0.3610i

-0.0396 + 0.0416i 0.0985 + 0.0095i 0.0733 + 0.0011i 0.0700 + 0.0348i

Columns 5 through 8

-0.0604 + 0.1767i 0.0732 - 0.0648i -0.0870 + 0.0383i 0.0298 - 0.0852i

-0.1665 + 0.3741i 0.3174 - 0.5234i -0.1990 + 0.4150i 0.3657 - 0.4760i

2-673

fftcoeffs

-0.2198 + 0.4273i -0.2690 + 0.3981i -0.2820 + 0.3095i -0.3633 + 0.3517i

-0.0537 - 0.0855i -0.0190 + 0.0336i 0.0091 - 0.0061i -0.0299 + 0.0001i

Columns 9 through 12

-0.0437 + 0.0676i 0.0499 - 0.0164i -0.0397 + 0.0165i 0.0455 - 0.0085i

-0.3293 + 0.3076i 0.4986 - 0.3949i -0.3300 + 0.3448i 0.5492 - 0.2633i

-0.2671 + 0.3238i -0.3813 + 0.2999i -0.4130 + 0.2333i -0.2910 + 0.2823i

-0.0300 + 0.0236i -0.0103 + 0.0438i 0.0244 + 0.0476i 0.1043 + 0.0359i

Columns 13 through 16

-0.0602 + 0.1189i -0.0227 - 0.1076i -0.0282 + 0.0634i 0.0170 - 0.0464i

-0.4385 + 0.0549i 0.5232 - 0.1904i -0.6414 - 0.1717i 0.5580 + 0.6477i

-0.4511 + 0.3217i -0.4301 + 0.1765i -0.2805 + 0.1270i -0.2531 + 0.0299i

0.1076 - 0.0383i -0.0166 + 0.0020i 0.0004 - 0.0376i 0.0071 - 0.0714i

See Also adaptfilt.fdaf, adaptfilt.pbfdaf, adaptfilt.pbufdaf,
adaptfilt.ufdaf

2-674

filter

Purpose Filter data with filter object

Syntax Fixed-Point Filter Syntaxes
y = filter(hd,x)
y = filter(hd,x,dim)

Adaptive Filter Syntax
y = filter(ha,x,d)
[y,e] = filter(ha,x,d)

Multirate Filter Syntax
y = filter(hm,x)
y = filter(hm,x,dim)

Description This reference page contains three sections that describe the syntaxes
for the filter objects:

• Fixed-Point Filter Syntaxes

• “Adaptive Filter Syntaxes” on page 2-676

• “Multirate Filter Syntaxes” on page 2-677

Fixed-Point Filter Syntaxes

y = filter(hd,x) filters a vector of real or complex input data x
through a fixed-point filter hd, producing filtered output data y. The
vectors x and y have the same length. filter stores the final conditions
for the filter in the States property of hd — hd.states.

When you set the property PersistentMemory to false (the default
setting), the initial conditions for the filter are set to zero before filtering
starts. To use nonzero initial conditions for hd, set PersistentMemory
to true. Then set hd.states to a vector of nstates(hd) elements, one
element for each state to set. If you specify a scalar for hd.states,
filter expands the scalar to a vector of the proper length for the states.
All elements of the expanded vector have the value of the scalar.

If x is a matrix, y = filter(hd,x) filters along each column of x to
produce a matrix y of independent channels. If x is a multidimensional

2-675

filter

array, y = filter(hd,x) filters x along the first nonsingleton
dimension of x.

To use nonzero initial conditions when you are filtering a matrix x, set
the filter states to a matrix of initial condition values. Set the initial
conditions by setting the States property for the filter (hd.states) to a
matrix of nstates(hd) rows and size(x,2) columns.

y = filter(hd,x,dim) applies the filter hd to the input data located
along the specific dimension of x specified by dim.

When you are filtering multichannel data, dim lets you specify which
dimension of the input matrix to filter along — whether a row
represents a channel or a column represents a channel. When you
provide the dim input argument, the filter operates along the dimension
specified by dim. When your input data x is a vector or matrix and dim
is 1, each column of x is treated as a one input channel. When dim is 2,
the filter treats each row of the input x as a channel.

To filter multichannel data in a loop environment, you must use the dim
input argument to set the proper processing dimension.

You specify the initial conditions for each channel individually, when
needed, by setting hm.states to a matrix of nstates(hd) rows (one row
containing the states for one channel of input data) and size(x,2)
columns (one column containing the filter states for each channel).

Adaptive Filter Syntaxes

y = filter(ha,x,d) filters a vector of real or complex input data x
through an adaptive filter object ha, producing the estimated desired
response data y from the process of adapting the filter. The vectors x
and y have the same length. Use d for the desired signal. Note that d
and x must be the same length signal chains.

[y,e] = filter(ha,x,d) produces the estimated desired response
data y and the prediction error e (refer to previous syntax for more
information).

2-676

filter

Multirate Filter Syntaxes

y = filter(hd,x) filters a vector of real or complex input data x
through a fixed-point filter hd, producing filtered output data y. The
vectors x and y have the same length. filter stores the final conditions
for the filter in the States property of hd — hd.states.

y = filter(hm,x,dim) applies the filter hd to the input data located
along the specific dimension of x specified by dim.

When you are filtering multichannel data, dim lets you specify which
dimension of the input matrix to filter along — whether a row
represents a channel or a column represents a channel. When you
provide the dim input argument, the filter operates along the dimension
specified by dim. When your input data x is a vector or matrix and dim
is 1, each column of x is treated as a one input channel. When dim is 2,
the filter treats each row of the input x as a channel.

To filter multichannel data in a loop environment, you must use the dim
input argument to set the processing dimension.

You specify the initial conditions for each channel individually, when
needed, by setting hm.states to a matrix of nstates(hm) rows (one row
containing the states for one channel of input data) and size(x,2)
columns (one column containing the filter states for each channel).

The number of data samples in your input data set x does not need to
be a multiple of the rate change factor r for the object. When the rate
change factor is not an even divisor of the number of input samples x,
filter processes the samples as shown in the following figure, where
the rate change factor is 3 and the number of input samples is 23.
Decimators always take the first input sample to generate the first
output sample. After that, the next output sample comes after each r
number of input samples.

2-677

filter

�������	�
���������������

��������������������������
������������������	

� � � � � � � �

���������� ��������
!"���� �#���������
��������������

Examples Filter a signal using a filter with various initial conditions (IC) or no
initial conditions.

x = randn(100,1); % Original signal.
b = fir1(50,.4); % 50th-order linear-phase FIR filter.
hd = dfilt.dffir(b); % Direct-form FIR implementation.

% Do not set specific initial conditions.

y1 = filter(hd,x); % 'PersistentMemory'='false'(default).
zf = hd.states; % Final conditions.

Now use nonzero initial conditions by setting ICs after before you filter.

hd.persistentmemory = true;
hd.states = 1; % Uses scalar expansion.
y2 = filter(hd,x);
stem([y1 y2]) % Different sequences at beginning.

Looking at the stem plot shows that the sequences are different at the
beginning of the filter process.

2-678

filter

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

1.5

Samples

F
ilt

er
 R

es
po

ns
e

Filter without ICs
Filter with ICs set

Here is one way to use filter with streaming data.

reset(hd); % Clear filter history.
y3 = filter(hd,x); % Filter entire signal in one block.

As an experiment, repeat the process, filtering the data as sections,
rather than in streaming form.

reset(hd); % Clear filter history.
yloop = zeros(100,1) % Preallocate output array.
xblock = reshape(x,[20 5]);
for i=1:5,

yloop = [yloop; filter(hd,xblock(:,i))];
end

2-679

filter

Use a stem plot to see the comparison between streaming and
block-by-block filtering.

stem([y3 yloop]);

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

Input Samples

F
ilt

er
 R

es
po

ns
e

y3
yloop

Filtering the signal section-by-section is equivalent to filtering the
entire signal at once.

To show the similarity between filtering with discrete-time and with
multirate filters, this example demonstrates multirate filtering.

Fs = 44.1e3; % Original sampling frequency: 44.1kHz.

n = [0:10239].'; % 10240 samples, 0.232 second long signal.

x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz.

m = 2; % Decimation factor.

hm = mfilt.firdecim(m); % Use the default filter.

2-680

filter

First, filter without setting initial conditions.

y1 = filter(hm,x); % PersistentMemory is false (default).

zf = hm.states; % Final conditions.

This time, set nonzero initial conditions before filtering the data.

hm.persistentmemory = true;
hm.states = 1; % Uses scalar expansion to set ICs.
y2 = filter(Hm,x);
stem([y1(1:60) y2(1:60)]) % Show the filtering results.

Note the different sequences at the start of filtering.

Finally, try filtering streaming data.

reset(hm); % Clear the filter history.

y3 = filter(hm,x); % Filter entire signal in one block.

As with the discrete-time filter, filtering the signal section by section is
equivalent to filtering the entire signal at once.

reset(hm); % Clear filter history again.
yloop = zeros(100,1) % Preallocate output array.
xblock = reshape(x,[2048 5]);
for i=1:5,

yloop = [yloop; filter(Hm,xblock(:,i))];end

Algorithm Quantized Filters

The filter command implements fixed- or floating-point arithmetic
on the quantized filter structure you specify.

The algorithm applied by filter when you use a discrete-time filter
object on an input signal depends on the response you chose for the
filter, such as lowpass or Nyquist or bandstop. To learn more about
each filter algorithm, refer to the literature reference provided on the
appropriate discrete-time filter reference page.

2-681

filter

Note dfilt/filter does not normalize the filter coefficients
automatically. Function filter supplied by MATLAB does normalize
the coefficients.

Adaptive Filters

The algorithm used by filter when you apply an adaptive filter object
to a signal depends on the algorithm you chose for your adaptive
filter. To learn more about each adaptive filter algorithm, refer to the
literature reference provided on the appropriate adaptfilt.algorithm
reference page.

Multirate Filters

The algorithm applied by filter when you apply a multirate filter
objects to signals depends on the algorithm you chose for the filter —
the form of the multirate filter, such as decimator or interpolator. To
learn more about each filter algorithm, refer to the literature reference
provided on the appropriate multirate filter reference page.

See Also adaptfilt, impz, mfilt, nstates

dfilt in Signal Processing Toolbox

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

2-682

filterbuilder

Purpose GUI-based filter design

Syntax filterbuilder('response')
filterbuilder(h)

Description filterbuilder('response') opens the filter design dialog box to
design a filter with the specified response. Enter the string to specify
the response surrounded by single quotes.

Response String Description of Resulting Filter
Design

arbmag Arbitrary magnitude and phase
filter

bandpass or bp Bandpass filter

bandstop or bs Bandstop filter

cic CIC filter

ciccomp CIC compensator

diff Differentiator filter

fracdelay Fractional delay filter

halfband or hb Halfband filter

highpass or hp Highpass filter

hilb Hilbert filter

isinclp Inverse sinc lowpass filter

lowpass or lp Lowpass filter (default)

notch Notch filter

nyquist Nyquist filter

octave Octave filter

2-683

filterbuilder

Response String Description of Resulting Filter
Design

parameq Parametric Equalizer filter

peak Peak filter

filterbuilder(h) launches the appropriate filter design dialog
box for the filter object h. For example, when h is a bandpass filter,
filterbuilder(h) opens the bandpass filter design dialog box.

To use this syntax to edit or change a filter h, you must have used
filterbuilder to design h or h must be a dfilt or mfilt object.

filterbuilder provides a graphical interface to the fdesign filter
design methods, providing the same capabilities for design in an
interactive environment.

Note Because they do not change the filter structure, the
magnitude specifications and design method are tunable when using
filterbuilder. This feature is fully described in the Signal Processing
Blockset User’s Guide.

Filterbuilder Dialog Box

Although the main pane of the filterbuilder dialog box varies depending
on the filter response type, the basic structure is the same. The
following figure shows the basic layout of the dialog box.

2-684

filterbuilder

As you choose the response for the filter, the available options and
design parameters displayed in the dialog box change. This display
allows you to focus only on parameters that make sense in the context
of your filter design.

Every filter design dialog box includes the options displayed at the top
of the dialog box, shown in the following figure.

2-685

filterbuilder

• Save variable as — When you click Apply to apply your changes or
OK to close this dialog box, filterbuilder saves the current filter to
your MATLAB workspace as a filter object with the name you enter.

• View Filter Response — Displays the magnitude response for the
current filter specifications and design method by opening the Filter
Visualization Tool (fvtool) from Signal Processing Toolbox. For
more information about FVTool, refer to Signal Processing Toolbox
documentation.

Note The filterbuilder dialog box includes an Apply option. Each
time you click Apply, filterbuilder writes the modified filter to your
MATLAB workspace. This modified filter has the variable name you
assign in Save variable as. To apply changes without overwriting the
variable in you workspace, change the variable name in Save variable
as before you click Apply.

There are three tabs in the Filterbuilder dialog box, containing three
panes: Main, Data Types, and Code Generation. The first pane
changes according to the filter being designed. The last two panes are
the same for all filters. These panes are discussed in the following
sections.

Data Types Pane
The second tab in the Filterbuilder dialog box is shown in the following
figure.

2-686

filterbuilder

The Arithmetic drop down box allows the choice of Double precision,
Single precision, or Fixed point. Some of these options may be
unavailable depending on the filter parameters. The following table
describes these options.

Arithmetic List
Entry

Effect on the Filter

Double precision All filtering operations and coefficients use
double-precision, floating-point representations
and math. When you use filterbuilder to
create a filter, double precision is the default
value for the Arithmetic property.

2-687

filterbuilder

Arithmetic List
Entry

Effect on the Filter

Single-precision All filtering operations and coefficients use
single-precision floating-point representations
and math.

Fixed point This string applies selected default values,
typically used on many digital processors, for
the properties in the fixed-point filter. These
properties include coefficient word lengths,
fraction lengths, and various operating modes.
This setting allows signed fixed data types only.
Fixed-point filter design with filterbuilder
is available only when you install Fixed-Point
Toolbox along with Filter Design Toolbox.

The following figure shows the Data Types pane after you select Fixed
point for Arithmetic.

2-688

filterbuilder

Not all parameters described in the following section apply to all filters.
For example, FIR filters do not have the Section input and Section
output parameters.

Input signal
Specify the format the filter applies to data to be filtered. For all
cases, filterbuilder implements filters that use binary point

2-689

filterbuilder

scaling and signed input. You set the word length and fraction
length as needed.

Coefficients
Choose how you specify the word length and the fraction length of
the filter numerator and denominator coefficients:

• Specify word length enables you to enter the word length
of the coefficients in bits. In this mode, filterbuilder
automatically sets the fraction length of the coefficients to
the binary-point only scaling that provides the best possible
precision for the value and word length of the coefficients.

• Binary point scaling enables you to enter the word
length and the fraction length of the coefficients in bits. If
applicable, enter separate fraction lengths for the numerator
and denominator coefficients.

• The filter coefficients do not obey the Rounding mode and
Overflow mode parameters that are available when you select
Specify precision from the Filter internals list. Coefficients
are always saturated and rounded to Nearest.

Section Input
Choose how you specify the word length and the fraction length of
the fixed-point data type going into each section of an SOS filter.
This parameter is visible only when the selected filter structure is
IIR and SOS.

• Binary point scaling enables you to enter the word and
fraction lengths of the section input in bits.

• Specify word length enables you to enter the word lengths
in bits.

Section Output
Choose how you specify the word length and the fraction length
of the fixed-point data type coming out of each section of an SOS
filter. This parameter is visible only when the selected filter
structure is IIR and SOS.

2-690

filterbuilder

• Binary point scaling enables you to enter the word and
fraction lengths of the section output in bits.

• Specify word length enables you to enter the output word
lengths in bits.

State
Contains the filter states before, during, and after filter
operations. States act as filter memory between filtering runs or
sessions. Use this parameter to specify how to designate the state
word and fraction lengths. This parameter is not visible for direct
form and direct form I filter structures because filterbuilder
deduces the state directly from the input format. States always
use signed representation:

• Binary point scaling enables you to enter the word length
and the fraction length of the accumulator in bits.

• Specify precision enables you to enter the word length and
fraction length in bits (if available).

Product
Determines how the filter handles the output of product
operations. Choose from the following options:

• Full precision — Maintain full precision in the result.

• Keep LSB — Keep the least significant bit in the result when
you need to shorten the data words.

• Specify Precision — Enables you to set the precision (the
fraction length) used by the output from the multiplies.

Filter internals
Specify how the fixed-point filter performs arithmetic operations
within the filter. The affected filter portions are filter products,
sums, states, and output. Select one of these options:

• Full precision — Specifies that the filter maintains full
precision in all calculations for products, output, and in the
accumulator.

2-691

filterbuilder

• Specify precision — Set the word and fraction lengths
applied to the results of product operations, the filter output,
and the accumulator. Selecting this option enables the word
and fraction length controls.

Signed
Selecting this option directs the filter to use signed representations
for the filter coefficients.

Word length
Sets the word length for the associated filter parameter in bits.

Fraction length
Sets the fraction length for the associate filter parameter in bits.

Accum
Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths.

Determines how the accumulator outputs stored values. Choose
from the following options:

• Full precision — Maintain full precision in the accumulator.

• Keep MSB — Keep the most significant bit in the accumulator.

• Keep LSB — Keep the least significant bit in the accumulator
when you need to shorten the data words.

• Specify Precision — Enables you to set the precision (the
fraction length) used by the accumulator.

Output
Sets the mode the filter uses to scale the output data after
filtering. You have the following choices:

• Avoid Overflow — Set the output data fraction length to avoid
causing the data to overflow. Avoid overflow is considered
the conservative setting because it is independent of the input
data values and range.

2-692

filterbuilder

• Best Precision — Set the output data fraction length to
maximize the precision in the output data.

• Specify Precision — Set the fraction length used by the
filtered data.

Fixed-point operational parameters
Parameters in this group control how the filter rounds fixed-point
values and how it treats values that overflow.

Rounding mode
Sets the mode the filter uses to quantize numeric values when
the values lie between representable values for the data format
(word and fraction lengths).

• Ceiling — Round up to the next allowable quantized value.

• Convergent — Round to the nearest allowable quantized value.
Numbers that are exactly halfway between the two nearest
allowable quantized values are rounded up only if the least
significant bit (after rounding) would be set to 1.

• Zero — Round negative numbers up and positive numbers
down to the next allowable quantized value.

• Floor — Round down to the next allowable quantized value.

• Nearest — Round to the nearest allowable quantized value.
Numbers that are halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects everything except coefficient values
and input data which always round. In most cases, products do
not overflow—they maintain full precision.

Overflow mode
Sets the mode the filter uses to respond to overflow conditions in
fixed-point arithmetic. Choose from the following options:

• Saturate — Limit the output to the largest positive or negative
representable value.

2-693

filterbuilder

• Wrap — Set overflowing values to the nearest representable
value using modular arithmetic.

The choice you make affects everything except coefficient values
and input data which always round. In most cases, products do
not overflow—they maintain full precision.

Cast before sum
Specifies whether to cast numeric data to the appropriate
accumulator format before performing sum operations. Selecting
Cast before sum ensures that the results of the affected sum
operations match most closely the results found on most digital
signal processors. Performing the cast operation before the
summation adds one or two additional quantization operations
that can add error sources to your filter results.

If you clear Cast before sum, the filter prevents the addends
from being cast to the sum format before the addition operation.
Choose this setting to get the most accurate results from
summations without considering the hardware your filter might
use. The input format referenced by Cast before sum depends
on the filter structure you are using.

The effect of clearing or selecting Cast before sum is as follows:

• Cleared — Configures filter summation operations to retain the
addends in the format carried from the previous operation.

• Selected — Configures filter summation operations to convert
the input format of the addends to match the summation
output format before performing the summation operation.
Usually, selecting Cast before sum generates results from the
summation that more closely match those found from digital
signal processors.

Code Generation Pane
The code generation pane contains options for various implementations
of the completed filter design. You can generate VHDL and Verilog

2-694

filterbuilder

code from the designed filter. You can generated M-Code. You can also
choose to create or update a Simulink model from the designed filter.
The following section explains these options.

HDL
For more information on this option, see “Opening the Generate
HDL Dialog Box from the filterbuilder GUI” documentation,
where all the parameters on the sub dialog box are explained in
detail.

2-695

filterbuilder

M-Code
Clicking on the Generate M-Code button, brings up a Save File
dialog. Specify the file name and location, and save. The filter is
now contained in an editable M-file.

Simulink Model
Clicking on the Generate Model button brings up the Export to
Simulink dialog box, as shown in the following figure.

You can set the following parameters in this dialog box:

• Block Name — The name for the new subsystem block, set to
Filter by default.

• Destination — Current saves the generated model to the
current Simulink model; New creates a new model to contain
the generated block.

• Overwrite generated ’Filter’ block — When this check box
is selected, Filter Design Toolbox overwrites an existing block
with the name specified in Block Name; when cleared, creates
a new block with the same name.

• Build model using basic elements — When this check box
is selected, Filter Design Toolbox builds the model using only
basic blocks.

2-696

filterbuilder

• Optimize for zero gains — When this check box is selected,
Filter Design Toolbox removes all zero gain blocks from the
model.

• Optimize for unity gains — When this check box is selected,
Filter Design Toolbox replaces all unity gains with direct
connections.

• Optimize for negative gains — When this check box is
selected, Filter Design Toolbox removes all negative unity gain
blocks, and changes sign at the nearest summation block.

• Optimize delay chains — When this check box is selected,
Filter Design Toolbox replaces cascaded delay blocks with a
single integer delay block with an equivalent total delay.

• Realize Model — Filter Design Toolbox builds the model with
the set parameters.

Main Pane
Most of this pane contains parameters specific to the filter type. These
are described in detail in the following sections:

• “Arbitrary Response Design Dialog Box — Main Pane” on page 2-699

• “Bandpass Filter Design Dialog Box — Main Pane” on page 2-703

• “Bandstop Filter Design Dialog Box — Main Pane” on page 2-711

• “CIC Filter Design Dialog Box — Main Pane” on page 2-719

• “CIC Compensator Filter Design Dialog Box — Main Pane” on page
2-722

• “Differentiator Filter Design Dialog Box — Main Pane” on page 2-728

• “Fractional Delay Filter Design Dialog Box — Main Pane” on page
2-735

• “Halfband Filter Design Dialog Box — Main Pane” on page 2-737

• “Highpass Filter Design Dialog Box — Main Pane” on page 2-744

2-697

filterbuilder

• “Hilbert Filter Design Dialog Box — Main Pane” on page 2-752

• “Inverse Sinc Filter Design Dialog Box — Main Pane” on page 2-758

• “Lowpass Filter Design Dialog Box — Main Pane” on page 2-766

• “Notch/Peak Filter Design Dialog Box — Main Pane” on page 2-774

• “Nyquist Filter Design Dialog Box — Main Pane” on page 2-778

• “Octave Filter Design Dialog Box — Main Pane” on page 2-785

• “Parametric Equalizer Filter Design Dialog Box — Main Pane” on
page 2-788

2-698

filterbuilder

Arbitrary Response Design Dialog Box — Main Pane

Filter Specifications
Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

2-699

filterbuilder

Impulse response
Select either FIR or IIR from the drop down list, where FIR is the
default impulse response. When you choose an impulse response,
the design methods and structures you can use to implement your
filter change accordingly.

Order
Enter the order for FIR filter, or the order of the numerator for
the IIR filter.

Denominator order
Select the check box and enter the denominator order. This option
is enabled only if IIR is selected for Impulse response.

Filter type
This option is available for FIR filters only. Select Single-rate,
Decimator, Interpolator, or Sample-rate converter. Your
choice determines the type of filter as well as the design methods
and structures that are available to implement your filter. By
default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or interpolator, the resulting
filter is a bandpass filter that either decimates or interpolates
your input signal.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

2-700

filterbuilder

Response Specification
Number of Bands

Select the number of bands in the filter. Multiband design is
available for both FIR and IIR filters.

Specify response as:
Specify the response as Amplitudes, Magnitudes and phase,
or Frequency response.

Frequency units
Specify frequency units as either Normalized, which means
normalized by the input sampling frequency, or select from Hz,
kHz, MHz, or GHz.

Input Fs
Enter the input sampling frequency in the units specified in the
Frequency units drop-down box. This option is enabled when
the frequency units are selected.

Band Properties
These properties are modified automatically depending on the
response chosen in the Specify response as drop-down box. Two or
three columns are presented for input. The first column is always
Frequencies. The other columns are either Amplitudes, Magnitudes,
Phases, or Frequency Response. Enter the corresponding vectors of
values for each column.

• Frequencies and Amplitudes — These columns are presented for
input if the response chosen in the Specify response as drop-down
box is Amplitudes.

• Frequencies, Magnitudes, and Phases — These columns are
presented for input if the response chosen in the Specify response
as drop-down box is Magnitudes and phases.

• Frequencies and Frequency response —These columns are
presented for input if the response chosen in the Specify response
as drop-down box is Frequency response.

2-701

filterbuilder

Algorithm
Design Method

Select the design method for the filter. Different methods are
enabled depending on the defining parameters entered in the
previous sections.

Structure
Select the structure for the filter, available for the design method
selected in the previous box.

Design Options
Available for some design methods, these options usually include
the following:

• Density factor — Controls the density of the frequency grid
over which the design method optimization evaluates your
filter response function

• Weights — Controls the relative importance applied to
meeting the error specification in each band, telling the design
algorithm how much emphasis to put on minimizing the error
in the vicinity of each frequency point relative to the other
points. This vector must have the same number of elements as
the frequencies vector specified in Band properties.

2-702

filterbuilder

Bandpass Filter Design Dialog Box — Main Pane

2-703

filterbuilder

Filter Specifications
Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

Impulse response
Select either FIR or IIR from the drop-down list, where FIR is the
default impulse response. When you choose an impulse response,
the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down
box. Selecting Specify enables the Order option (explained in
the following descriptions) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Filter order mode.

2-704

filterbuilder

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency Specifications
The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to those shown
in the following figure.

In the figure, regions between specification values such as Fstop1 and
Fpass1 represent transition regions where the filter response is not
explicitly defined.

Frequency constraints
Select the filter features to use to define the frequency response
characteristics. The list contains the following options, when
available for the filter specifications.

2-705

filterbuilder

• Passband and stopband edges — Define the filter by
specifying the frequencies for the edges for the stop- and
passbands.

• Passband edges — Define the filter by specifying frequencies
for the edges of the passband.

• Stopband edges — Define the filter by specifying frequencies
for the edges of the stopbands.

• 3 dB points — Define the filter response by specifying the
locations of the 3 dB points. The 3 dB point is the frequency for
the point 3 dB point below the passband value.

• 3 dB points and passband width — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the passband.

• 3 dB points and stopband widths — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the stopband.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

2-706

filterbuilder

Fstop1
Enter the frequency at the edge of the end of the first stopband.
Specify the value in either normalized frequency units or the
absolute units you select in Frequency units.

Fpass1
Enter the frequency at the edge of the start of the passband.
Specify the value in either normalized frequency units or the
absolute units you select Frequency units.

Fpass2
Enter the frequency at the edge of the end of the passband.
Specify the value in either normalized frequency units or the
absolute units you select Frequency units.

Fstop2
Enter the frequency at the edge of the start of the second
stopband. Specify the value in either normalized frequency units
or the absolute units you select Frequency units.

Magnitude Specifications
The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear — Specify the magnitude in linear units.

• dB — Specify the magnitude in dB (decibels). This is the default
setting.

• Squared — Specify the magnitude in squared units.

Astop1
Enter the filter attenuation in the first stopband in the units you
choose for Magnitude units, either linear or decibels.

2-707

filterbuilder

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels.

Astop2
Enter the filter attenuation in the second stopband in the units
you choose for Magnitude units, either linear or decibels.

Algorithm
The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select

2-708

filterbuilder

different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Minimum phase
To design a filter that is minimum phase, select Minimum
phase. Clearing the Minimum phase option removes the phase
constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines
and design the minimum order filter to meet your specifications.
Some filters do not provide this parameter. Select Any, Even,
or Odd from the drop-down list to direct the design to be any
minimum order, or minimum even order, or minimum odd order.

Note Generally, Minimum order designs are not available for
IIR filters.

Match Exactly
Specifies that the resulting filter design matches either the
passband or stopband or both bands when you select passband or
stopband or both from the drop-down list.

2-709

filterbuilder

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.
filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

2-710

filterbuilder

Bandstop Filter Design Dialog Box — Main Pane

2-711

filterbuilder

Filter Specifications
Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

Impulse response
Select either FIR or IIR from the drop-down list, where FIR is the
default impulse response. When you choose an impulse response,
the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down
list. Selecting Specify enables the Order option (see the
following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Filter order mode.

2-712

filterbuilder

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency Specifications
The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to those shown
in the following figure.

Frequency constraints
Select the filter features to use to define the frequency response
characteristics. The list contains the following options, when
available for the filter specifications.

• Passband and stopband edges — Define the filter by
specifying the frequencies for the edges for the stop- and
passbands.

2-713

filterbuilder

• Passband edges — Define the filter by specifying frequencies
for the edges of the passband.

• Stopband edges — Define the filter by specifying frequencies
for the edges of the stopbands.

• 3 dB points — Define the filter response by specifying the
locations of the 3 dB points. The 3 dB point is the frequency for
the point 3 dB point below the passband value.

• 3 dB points and passband width — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the passband.

• 3 dB points and stopband widths — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the stopband.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Output Fs
When you design an interpolator, Fs represents the sampling
frequency at the filter output rather than the filter input. This
option is available only when you set Filter type is interpolator.

2-714

filterbuilder

Fpass1
Enter the frequency at the edge of the end of the first passband.
Specify the value in either normalized frequency units or the
absolute units you select in Frequency units.

Fstop1
Enter the frequency at the edge of the start of the stopband.
Specify the value in either normalized frequency units or the
absolute units you select Frequency units.

Fstop2
Enter the frequency at the edge of the end of the stopband. Specify
the value in either normalized frequency units or the absolute
units you select Frequency units.

Fpass2
Enter the frequency at the edge of the start of the second
passband. Specify the value in either normalized frequency units
or the absolute units you select Frequency units.

Magnitude Specifications
The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear — Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default).

• Squared — Specify the magnitude in squared units.

Apass1
Enter the filter ripple allowed in the first passband in the units
you choose for Magnitude units, either linear or decibels.

2-715

filterbuilder

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels

Apass2
Enter the filter ripple allowed in the second passband in the units
you choose for Magnitude units, either linear or decibels

Algorithm
The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select

2-716

filterbuilder

different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Minimum phase
To design a filter that is minimum phase, select Minimum
phase. Clearing the Minimum phase option removes the phase
constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines
and design the minimum order filter to meet your specifications.
Some filters do not provide this parameter. Select Any, Even,
or Odd from the drop-down list to direct the design to be any
minimum order, or minimum even order, or minimum odd order.

Note Generally, Minimum order designs are not available for
IIR filters.

Match Exactly
Specifies that the resulting filter design matches either the
passband or stopband or both bands when you select passband or
stopband or both from the drop-down list.

2-717

filterbuilder

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.
filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

2-718

filterbuilder

CIC Filter Design Dialog Box — Main Pane

Filter Specifications
Parameters in this group enable you to specify your CIC filter format,
such as the filter type and the differential delay.

Filter type
Select whether your filter will be a decimator or an interpolator.
Your choice determines the type of filter and the design methods
and structures that are available to implement your filter.
Selecting decimator or interpolator activates the Factor
option. When you design an interpolator, you enable the Output
Fs parameter.

2-719

filterbuilder

When you design either a decimator or interpolator, the resulting
filter is a CIC filter that decimates or interpolates your input
signal.

Differential Delay
Specify the differential delay of your CIC filter. The default value
is 1. Most CIC filters use 1 or 2. Differential delay changes
both the shape and number of nulls in the filter response. The
delay value also affects the null locations. Increasing the delay
increases the number and sharpness of the nulls and response
between nulls. Generally, 1 or 2 work best as values for the delay.

Factor
When you select decimator or interpolator for Filter type,
enter the decimation or interpolation factor for your filter in this
field. You must enter a positive integer for the factor. The default
factor value is 2.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Output Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter output. When you
provide an output sampling frequency, all frequencies in the

2-720

filterbuilder

specifications are in the selected units as well. This parameter is
available only when you design interpolators.

Fpass
Enter the frequency at the end of the passband. Specify the value
in either normalized frequency units or the absolute units you
select Frequency units.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear — Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default).

• Squared — Specify the magnitude in squared units.

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels.

2-721

filterbuilder

CIC Compensator Filter Design Dialog Box — Main Pane

2-722

filterbuilder

Filter Specifications
Parameters in this group enable you to specify your filter format, such
as the filter order mode and the filter type.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down
list. Selecting Specify enables the Order option (see the
following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Filter order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

2-723

filterbuilder

Number of CIC sections
Specify the number of sections in the CIC filter for which you are
designing this compensator. Select the number of sections from
the drop-down list or enter the number.

Differential Delay
Specify the differential delay of your target CIC filter. The default
value is 1. Most CIC filters use 1 or 2.

Frequency Specifications

The parameters in this group allow you to specify your filter response
curve.

Frequency Specifications
Frequency units

Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Output Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter output. When you
provide an output sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available only when you design interpolators.

2-724

filterbuilder

Fpass
Enter the frequency at the end of the passband. Specify the value
in either normalized frequency units or the absolute units you
select Frequency units.

Fstop
Enter the frequency at the start of the stopband. Specify the
value in either normalized frequency units or the absolute units
you select Frequency units.

Magnitude Specifications
The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear — Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default).

• Squared — Specify the magnitude in squared units.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels

Algorithm
The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

2-725

filterbuilder

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Minimum phase
To design a filter that is minimum phase, select Minimum
phase. Clearing the Minimum phase option removes the phase
constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines
and design the minimum order filter to meet your specifications.
Some filters do not provide this parameter. Select Any, Even,
or Odd from the drop-down list to direct the design to be any
minimum order, or minimum even order, or minimum odd order.

2-726

filterbuilder

Note Generally, Minimum order designs are not available for
IIR filters.

Match Exactly
Specifies that the resulting filter design matches either the
passband or stopband or both bands when you select passband or
stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.

2-727

filterbuilder

filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Differentiator Filter Design Dialog Box — Main Pane

2-728

filterbuilder

Filter Specifications
Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order. Graphically, the filter
specifications look similar to those shown in the following figure.

In the figure, regions between specification values such as Fpass (f1)
and Fstop (f3) represent transition regions where the filter response is
not explicitly defined.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down
list. Selecting Specify enables the Order option (see the
following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

2-729

filterbuilder

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Filter order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency Specifications
The parameters in this group allow you to specify your filter response
curve.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you

2-730

filterbuilder

provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Fpass
Enter the frequency at the end of the passband. Specify the value
in either normalized frequency units or the absolute units you
select Frequency units.

Fstop
Enter the frequency at the start of the stopband. Specify the
value in either normalized frequency units or the absolute units
you select Frequency units.

2-731

filterbuilder

Magnitude Specifications
The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear — Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default).

• Squared — Specify the magnitude in squared units.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels.

Astop2
Enter the filter attenuation in the second stopband in the units
you choose for Magnitude units, either linear or decibels.

Algorithm
The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

2-732

filterbuilder

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Minimum phase
To design a filter that is minimum phase, select Minimum
phase. Clearing the Minimum phase option removes the phase
constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines
and design the minimum order filter to meet your specifications.
Some filters do not provide this parameter. Select Any, Even,
or Odd from the drop-down list to direct the design to be any
minimum order, or minimum even order, or minimum odd order.

2-733

filterbuilder

Note Generally, Minimum order designs are not available for
IIR filters.

Match Exactly
Specifies that the resulting filter design matches either the
passband or stopband or both bands when you select passband or
stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.

2-734

filterbuilder

filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Fractional Delay Filter Design Dialog Box — Main Pane

Frequency Specifications
Parameters in this group enable you to specify your filter format, such
as the fractional delay and the filter order.

Order
If you choose Specify for Filter order mode, enter your
filter order in this field, or select the order from the drop-down
list.filterbuilder designs a filter with the order you specify.

2-735

filterbuilder

Fractional delay
Specify a value between 0 and 1 samples for the filter fractional
delay. The default value is 0.5 samples.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

2-736

filterbuilder

Halfband Filter Design Dialog Box — Main Pane

Filter Specifications
Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

2-737

filterbuilder

Impulse response
Select either FIR or IIR from the drop-down list, where FIR is the
default impulse response. When you choose an impulse response,
the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down
list. Selecting Specify enables the Order option (see the
following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Filter order mode.

2-738

filterbuilder

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency Specifications
The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications for a halfband lowpass filter
look similar to those shown in the following figure.

In the figure, the transition region lies between the end of the passband
and the start of the stopband. The width is defined explicitly by the
value of Transition width.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)

2-739

filterbuilder

to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Transition width
Specify the width of the transition between the end of the
passband and the edge of the stopband. Specify the value in
normalized frequency units or the absolute units you select in
Frequency units.

Magnitude Specifications
The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear — Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default).

• Squared — Specify the magnitude in squared units.

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels.

2-740

filterbuilder

Algorithm
The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

2-741

filterbuilder

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Minimum phase
To design a filter that is minimum phase, select Minimum
phase. Clearing the Minimum phase option removes the phase
constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines
and design the minimum order filter to meet your specifications.
Some filters do not provide this parameter. Select Any, Even,
or Odd from the drop-down list to direct the design to be any
minimum order, or minimum even order, or minimum odd order.

Note Generally, Minimum order designs are not available for
IIR filters.

Match Exactly
Specifies that the resulting filter design matches either the
passband or stopband or both bands when you select passband or
stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

2-742

filterbuilder

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.
filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

2-743

filterbuilder

Highpass Filter Design Dialog Box — Main Pane

Filter Specifications
Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

2-744

filterbuilder

Impulse response
Select either FIR or IIR from the drop-down list, where FIR is the
default impulse response. When you choose an impulse response,
the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down
list. Selecting Specify enables the Order option (see the
following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Filter order mode.

2-745

filterbuilder

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency Specifications
The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to those shown
in the following figure.

In the figure, the region between specification values Fstop and Fpass
represents the transition region where the filter response is not
explicitly defined.

Frequency constraints
Select the filter features to use to define the frequency response
characteristics. The list contains the following options, when
available for the filter specifications.

2-746

filterbuilder

• Passband and stopband edges — Define the filter by
specifying the frequencies for the edges for the stop- and
passbands.

• Passband edges — Define the filter by specifying frequencies
for the edges of the passband.

• Stopband edges — Define the filter by specifying frequencies
for the edges of the stopbands.

• 3 dB points — Define the filter response by specifying the
locations of the 3 dB points. The 3 dB point is the frequency for
the point 3 dB point below the passband value.

• 3 dB points and passband width — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the passband.

• 3 dB points and stopband widths — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the stopband.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

2-747

filterbuilder

Fstop
Enter the frequency at the edge of the end of the stopband. Specify
the value in either normalized frequency units or the absolute
units you select in Frequency units.

Fpass
Enter the frequency at the edge of the start of the passband.
Specify the value in either normalized frequency units or the
absolute units you select Frequency units.

Magnitude Specifications
The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear — Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default).

• Squared — Specify the magnitude in squared units.

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels.

Algorithm
The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the

2-748

filterbuilder

specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

2-749

filterbuilder

Minimum phase
To design a filter that is minimum phase, select Minimum
phase. Clearing the Minimum phase option removes the phase
constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines
and design the minimum order filter to meet your specifications.
Some filters do not provide this parameter. Select Any, Even,
or Odd from the drop-down list to direct the design to be any
minimum order, or minimum even order, or minimum odd order.

Note Generally, Minimum order designs are not available for
IIR filters.

Match Exactly
Specifies that the resulting filter design matches either the
passband or stopband or both bands when you select passband or
stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

2-750

filterbuilder

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.
filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

2-751

filterbuilder

Hilbert Filter Design Dialog Box — Main Pane

Filter Specifications
Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

2-752

filterbuilder

Impulse response
Select either FIR or IIR from the drop-down list, where FIR is the
default impulse response. When you choose an impulse response,
the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down
list. Selecting Specify enables the Order option (see the
following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Filter order mode.

2-753

filterbuilder

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency Specifications
The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to those shown
in the following figure.

In the figure, the regions between 0 and f1 and between f2 and 1
represent the transition regions where the filter response is explicitly
defined by the transition width.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)

2-754

filterbuilder

to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Transition width
Specify the width of the transitions at the ends of the passband.
Specify the value in normalized frequency units or the absolute
units you select in Frequency units.

Magnitude Specifications
The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear — Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default)

• Squared — Specify the magnitude in squared units.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels.

Algorithm
The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

2-755

filterbuilder

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 20 represents a

2-756

filterbuilder

reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

FIR Type
Specify whether to design a type 3 or a type 4 FIR filter. The filter
type is defined as follows:

• Type 3 — FIR filter with even order antisymmetric coefficients

• Type 4 — FIR filter with odd order antisymmetric coefficients
Select either 3 or 4 from the drop-down list.

Minimum order
When you select this parameter, the design method determines
and design the minimum order filter to meet your specifications.
Some filters do not provide this parameter. Select Any, Even,
or Odd from the drop-down list to direct the design to be any
minimum order, or minimum even order, or minimum odd order.

Note Generally, Minimum order designs are not available for
IIR filters.

2-757

filterbuilder

Inverse Sinc Filter Design Dialog Box — Main Pane

Filter Specifications
Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down
list. Selecting Specify enables the Order option (see the
following sections) so you can enter the filter order.

2-758

filterbuilder

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Filter order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency Specifications
The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to those shown
in the following figure.

2-759

filterbuilder

Regions between specification values such as Fpass and Fstop represent
transition regions where the filter response is not explicitly defined.

Frequency constraints
Select the filter features to use to define the frequency response
characteristics. The list contains the following options, when
available for the filter specifications.

• Passband and stopband edges — Define the filter by
specifying the frequencies for the edges for the stop- and
passbands.

• Passband edges — Define the filter by specifying frequencies
for the edges of the passband.

• Stopband edges — Define the filter by specifying frequencies
for the edges of the stopbands.

• 3 dB points — Define the filter response by specifying the
locations of the 3 dB points. The 3 dB point is the frequency for
the point 3 dB point below the passband value.

2-760

filterbuilder

• 3 dB points and passband width — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the passband.

• 3 dB points and stopband widths — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the stopband.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

Fpass
Enter the frequency at the end of the passband. Specify the value
in either normalized frequency units or the absolute units you
select Frequency units.

Fstop
Enter the frequency at the start of the stopband. Specify the
value in either normalized frequency units or the absolute units
you select Frequency units.

Magnitude Specifications
The parameters in this group let you specify the filter response in the
passbands and stopbands.

2-761

filterbuilder

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear — Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default)

• Squared — Specify the magnitude in squared units.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels.

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels.

Algorithm
The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations

2-762

filterbuilder

in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Minimum phase
To design a filter that is minimum phase, select Minimum
phase. Clearing the Minimum phase option removes the phase
constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines
and design the minimum order filter to meet your specifications.
Some filters do not provide this parameter. Select Any, Even,
or Odd from the drop-down list to direct the design to be any
minimum order, or minimum even order, or minimum odd order.

2-763

filterbuilder

Note Generally, Minimum order designs are not available for
IIR filters.

Match Exactly
Specifies that the resulting filter design matches either the
passband or stopband or both bands when you select passband or
stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options;

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.

2-764

filterbuilder

filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

2-765

filterbuilder

Lowpass Filter Design Dialog Box — Main Pane

2-766

filterbuilder

Filter Specifications
Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

Impulse response
Select either FIR or IIR from the drop-down list, where FIR is the
default impulse response. When you choose an impulse response,
the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down
list. Selecting Specify enables the Order option (see the
following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

Order
Enter the filter order. This option is enabled only if Specify was
selected for Filter order mode.

2-767

filterbuilder

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency Specifications
The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to the one
shown in the following figure.

In the figure, regions between specification values such as Fpass and Fstop
represent transition regions where the filter response is not explicitly
defined.

Frequency constraints
Select the filter features to use to define the frequency response
characteristics. The list contains the following options, when
available for the filter specifications.

2-768

filterbuilder

• Passband and stopband edges — Define the filter by
specifying the frequencies for the edges for the stopbands and
passbands.

• Passband edges — Define the filter by specifying frequencies
for the edges of the passband.

• Stopband edges — Define the filter by specifying frequencies
for the edges of the stopbands.

• 3 dB points — Define the filter response by specifying the
locations of the 3 dB points. The 3 dB point is the frequency for
the point 3 dB point below the passband value.

• 3 dB points and passband width — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the passband.

• 3 dB points and stopband widths — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the stopband.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is
available when you select one of the frequency options from the
Frequency units list.

2-769

filterbuilder

Fpass
Enter the frequency at the of the passband. Specify the value in
either normalized frequency units or the absolute units you select
Frequency units.

Fstop
Enter the frequency at the start of the stopband. Specify the
value in either normalized frequency units or the absolute units
you select Frequency units.

Magnitude Specifications
The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear — Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default)

• Squared — Specify the magnitude in squared units.

Apass
Enter the filter ripple allowed in the passband in the units you
choose for Magnitude units, either linear or decibels.

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels.

Algorithm
The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the

2-770

filterbuilder

specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

2-771

filterbuilder

Minimum phase
To design a filter that is minimum phase, select Minimum
phase. Clearing the Minimum phase option removes the phase
constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines
and design the minimum order filter to meet your specifications.
Some filters do not provide this parameter. Select Any, Even,
or Odd from the drop-down list to direct the design to be any
minimum order, or minimum even order, or minimum odd order.

Note Generally, Minimum order designs are not available for
IIR filters.

Match Exactly
Specifies that the resulting filter design matches either the
passband or stopband or both bands when you select passband or
stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

2-772

filterbuilder

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.
filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

2-773

filterbuilder

Notch/Peak Filter Design Dialog Box — Main Pane
Main Pane

Filter Specifications
In this are you can specify whether you want to design a peaking filter
or a notching filter, as well as the order of the filter.

Response
Select Peak or Notch from the drop-down box. The rest of the
parameters that specify are equivalent for either filter type.

2-774

filterbuilder

Order
Enter the filter order. The order must be even.

Frequency Specifications
This group of parameters allows you to specify frequency constraints
and units.

Frequency Constraints
Select the frequency constraints for filter specification. There
are two choices as follows:

• Center frequency and quality factor

• Center frequency and bandwidth

Frequency units
The frequency units are normalized by default. If you specify
units other than normalized, filterbuilder assumes that you
wish to specify an input sampling frequency, and enables this
input box. The choice of frequency units are: Normalized (0 to
1), Hz, kHz, MHz, GHz.

Input Fs
This input box is enabled if Frequency units other than
Normalized (0 to 1) are specified. Enter the input sampling
frequency.

Center frequency
Enter the center frequency in the units specified previously.

Quality Factor
This input box is enabled only when Center frequency and
quality factor is chosen for the Frequency Constraints.
Enter the quality factor.

Bandwidth
This input box is enabled only when Center frequency and
bandwidth is chosen for the Frequency Constraints. Enter
the bandwidth.

2-775

filterbuilder

Magnitude Specifications
This group of parameters allows you to specify the magnitude
constraints, as well as their values and units.

Magnitude Constraints
Depending on the choice of constraints, the other input boxes
in this are enabled or disabled. Select from four magnitude
constraints available:

• Unconstrained

• Passband ripple

• Stopband attenuation

• Passband ripple and stopband attenuation

Magnitude units
Select the magnitude units: either dB or squared.

Apass
This input box is enabled if the magnitude constraints selected
are Passband ripple or Passband ripple and stopband
attenuation. Enter the passband ripple.

Astop
This input box is enabled if the magnitude constraints selected
are Stopband attenuation or Passband ripple and stopband
attenuation. Enter the stopband attenuation.

Algorithm
The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists all design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter the methods available to design filters
changes as well.

2-776

filterbuilder

Structure
Lists all available filter structures for the filter specifications and
design method you select. The typical options are:

• Direct-form I SOS

• Direct-form II SOS

• Direct-form I transposed SOS

• Direct-form II transposed SOS

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

2-777

filterbuilder

Nyquist Filter Design Dialog Box — Main Pane

Filter Specifications
Parameters in this group enable you to specify your filter format, such
as the impulse response and the filter order.

2-778

filterbuilder

Band
Specifies the location of the center of the transition region between
the passband and the stopband. The center of the transition
region, bw, is calculated using the value for Band:

bw = Fs/(2*Band).

Impulse response
Select either FIR or IIR from the drop-down list, where FIR is the
default impulse response. When you choose an impulse response,
the design methods and structures you can use to implement your
filter change accordingly.

Note The design methods and structures for FIR filters are not
the same as the methods and structures for IIR filters.

Filter order mode
Select either Minimum (the default) or Specify from the drop-down
list. Selecting Specify enables the Order option (see the
following sections) so you can enter the filter order.

Filter type
Select Single-rate, Decimator, Interpolator, or Sample-rate
converter. Your choice determines the type of filter as well as the
design methods and structures that are available to implement
your filter. By default, filterbuilder specifies single-rate filters.

• Selecting Decimator or Interpolator activates the
Decimation Factor or the Interpolation Factor options
respectively.

• Selecting Sample-rate converter activates both factors.

When you design either a decimator or an interpolator, the
resulting filter is a bandpass filter that either decimates or
interpolates your input signal.

2-779

filterbuilder

Order
Enter the filter order. This option is enabled only if Specify was
selected for Filter order mode.

Decimation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Decimator or Sample-rate converter. The
default factor value is 2.

Interpolation Factor
Enter the decimation factor. This option is enabled only if the
Filter type is set to Interpolator or Sample-rate converter.
The default factor value is 2.

Frequency Specifications
The parameters in this group allow you to specify your filter response
curve. Graphically, the filter specifications look similar to those shown
in the following figure.

In the figure, BW is the width of the transition region and Band
determines the location of the center of the region.

2-780

filterbuilder

Frequency constraints
Select the filter features to use to define the frequency response
characteristics. The list contains the following options, when
available for the filter specifications.

• Passband and stopband edges — Define the filter by
specifying the frequencies for the edges for the stopbands and
passbands.

• Passband edges — Define the filter by specifying frequencies
for the edges of the passband.

• Stopband edges — Define the filter by specifying frequencies
for the edges of the stopbands.

• 3 dB points — Define the filter response by specifying the
locations of the 3 dB points. The 3 dB point is the frequency for
the point 3 dB point below the passband value.

• 3 dB points and passband width — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the passband.

• 3 dB points and stopband widths — Define the filter by
specifying frequencies for the 3 dB points in the filter response
and the width of the stopband.

Frequency units
Use this parameter to specify whether your frequency settings are
normalized or in absolute frequency. Select Normalized (0 1)
to enter frequencies in normalized form. This behavior is the
default. To enter frequencies in absolute values, select one of the
frequency units from the drop-down list—Hz, kHz, MHz, or GHz.
Selecting one of the unit options enables the Input Fs parameter.

Input Fs
Fs, specified in the units you selected for Frequency units,
defines the sampling frequency at the filter input. When you
provide an input sampling frequency, all frequencies in the
specifications are in the selected units as well. This parameter is

2-781

filterbuilder

available when you select one of the frequency options from the
Frequency units list.

Transition width
Specify the width of the transition between the end of the
passband and the edge of the stopband. Specify the value in
normalized frequency units or the absolute units you select in
Frequency units.

Magnitude Specifications
The parameters in this group let you specify the filter response in the
passbands and stopbands.

Magnitude units
Specify the units for any parameter you provide in magnitude
specifications. Select one of the following options from the
drop-down list.

• Linear — Specify the magnitude in linear units.

• dB — Specify the magnitude in decibels (default)

• Squared — Specify the magnitude in squared units.

Astop
Enter the filter attenuation in the stopband in the units you
choose for Magnitude units, either linear or decibels.

2-782

filterbuilder

Algorithm
The parameters in this group allow you to specify the design method
and structure that filterbuilder uses to implement your filter.

Design Method
Lists the design methods available for the frequency and
magnitude specifications you entered. When you change the
specifications for a filter, such as changing the impulse response,
the methods available to design filters changes as well. The
default IIR design method is usually Butterworth, and the default
FIR method is equiripple.

Structure
For the filter specifications and design method you select, this
parameter lists the filter structures available to implement your
filter. By default, FIR filters use direct-form structure, and IIR
filters use direct-form II filters with SOS.

Scale SOS filter coefficients to reduce chance of overflow
Selecting this parameter directs the design to scale the filter
coefficients to reduce the chances that the inputs or calculations
in the filter overflow and exceed the representable range of the
filter. Clearing this option removes the scaling. This parameter
applies only to IIR filters.

Design Options

The options for each design are specific for each design method. This
section does not present all of the available options for all designs and
design methods. There are many more that you encounter as you select
different design methods and filter specifications. The following options
represent some of the most common ones available.

Density factor
Density factor controls the density of the frequency grid over
which the design method optimization evaluates your filter
response function. The number of equally spaced points in the grid
is the value you enter for Density factor times (filter order + 1).

2-783

filterbuilder

Increasing the value creates a filter that more closely
approximates an ideal equiripple filter but increases the time
required to design the filter. The default value of 20 represents a
reasonable trade between the accurate approximation to the ideal
filter and the time to design the filter.

Minimum phase
To design a filter that is minimum phase, select Minimum
phase. Clearing the Minimum phase option removes the phase
constraint—the resulting design is not minimum phase.

Minimum order
When you select this parameter, the design method determines
and design the minimum order filter to meet your specifications.
Some filters do not provide this parameter. Select Any, Even,
or Odd from the drop-down list to direct the design to be any
minimum order, or minimum even order, or minimum odd order.

Note Generally, Minimum order designs are not available for
IIR filters.

Match Exactly
Specifies that the resulting filter design matches either the
passband or stopband or both bands when you select passband or
stopband or both from the drop-down list.

Stopband Shape
Stopband shape lets you specify how the stopband changes with
increasing frequency. Choose one of the following options:

• Flat — Specifies that the stopband is flat. The attenuation
does not change as the frequency increases.

• Linear — Specifies that the stopband attenuation changes
linearly as the frequency increases. Change the slope of the
stopband by setting Stopband decay.

2-784

filterbuilder

• 1/f — Specifies that the stopband attenuation changes
exponentially as the frequency increases, where f is the
frequency. Set the power (exponent) for the decay in Stopband
decay.

Stopband Decay
When you set Stopband shape, Stopband decay specifies the
amount of decay applied to the stopband. the following conditions
apply to Stopband decay based on the value of Stopband Shape:

• When you set Stopband shape to Flat, Stopband decay
has no affect on the stopband.

• When you set Stopband shape to Linear, enter the slope of
the stopband in units of dB/rad/s. filterbuilder applies that
slope to the stopband.

• When you set Stopband shape to 1/f, enter a value for the
exponent n in the relation (1/f)n to define the stopband decay.
filterbuilder applies the (1/f)n relation to the stopband to
result in an exponentially decreasing stopband attenuation.

Octave Filter Design Dialog Box — Main Pane

Main Pane

Filter Specifications
Order

Specify filter order. Possible values are: 4, 6, 8, 10.

Bands per octave
Specify the number of bands per octave. Possible values are: 1,
3, 6, 12, 24.

Frequency units
Specify frequency units as Hz or kHz.

Input Fs
Specify the input sampling frequency in the frequency units
specified previously.

2-785

filterbuilder

Center Frequency
Select from the drop-down list of available center frequency
values.

Algorithm

Design Method
Butterworth is the design method used for this type of filter.

Structure
Specify filter structure. Choose from:

• Direct-form I SOS

• Direct-form II SOS

• Direct-form I transposed SOS

• Direct-form II transposed SOS

Scale SOS filter coefficients to reduce chance of overflow
Select the check box to scale the filter coefficients.

2-786

filterbuilder

2-787

filterbuilder

Parametric Equalizer Filter Design Dialog Box — Main Pane
Filter Specifications

Filter Specifications

Order mode
Select Minimum for minimum filter order, or Specify to enter
a specific filter order. The order mode also affects the possible

2-788

filterbuilder

frequency constraints, which in turn limit the gain specifications.
For example, if you specify a Minimum order filter, then the
available frequency constraints are: Center frequency,
bandwidth, passband width and Center frequency,
bandwidth, stopband width. However, if you select a specific
filter order, then the list of frequency constraints consists of:
Center frequency, bandwidth and Low frequency, high
frequency.

Order
This parameter is enabled only if theOrder mode is set to
Specify. Enter the filter order in this text box.

Frequency specifications

Depending on the filter order, the possible frequency constraints change.
Also, once you choose the frequency constraints the input boxes in this
area change to reflect the selection.

Frequency constraints
Select the specification array to represent frequency constraints.
The following options are available:

• Center frequency, bandwidth, passband width (available
for minimum order only)

• Center frequency, bandwidth, stopband width (available
for minimum order only)

• Center frequency, bandwidth (available for a custom
specified order only)

• Low frequency, high frequency (available for a custom
specified order only)

Frequency units
Select the frequency units from the available drop down list
(Normalized, Hz, kHz, MHz, GHz). If Normalized is selected,
then the Input Fs box is disabled for input.

2-789

filterbuilder

Input Fs
Enter the input sampling frequency. This input box is disabled for
input if Normalized is selected in the Frequency units input box.

Center frequency
Enter the center frequency, either normalized, or in the units
selected previously.

Bandwidth
Enter the bandwidth.

Passband width
Enter the passband width. This option is enabled only if the filter
is of minimum order, and the frequency constraint selected is
Center frequency, bandwidth, passband width.

Stopband width
Enter the stopband width. This option is enabled only if the filter
is of minimum order, and the frequency constraint selected is
Center frequency, bandwidth, stopband width.

Low frequency
Enter the low frequency. This option is enabled only if the filter
order is user specified and the frequency constraint selected is Low
frequency, high frequency

High frequency
Enter the high frequency. This option is enabled only if the filter
order is user specified and the frequency constraint selected is Low
frequency, high frequency

Gain Specifications

Depending on the filter order and frequency constraints, the possible
gain constraints change. Also, once you choose the gain constraints the
input boxes in this area change to reflect the selection.

2-790

filterbuilder

Gain constraints
Select the specification array to represent gain constraints,
and remember that not all of these options are available for all
configurations. The following is a list of all available options:

• Reference, center frequency, bandwidth, passband

• Reference, center frequency, bandwidth, stopband

• Reference, center frequency, bandwidth, passband,
stopband

• Reference, center frequency, bandwidth

Gain units
Specify the gain units either dB or squared. These units are used
for all gain specifications in the dialog box.

Reference
Enter the reference gain.

Bandwidth
Enter the bandwidth.

Center frequency
Enter the center frequency (in the units specified in Frequency
units input box)

Passband
Specify the passband gain. This input is enabled only for specific
configurations.

Stopband
Specify the stopband gain. This input is enabled only for specific
configurations.

Algorithm

Design method
Select the design method from the drop-down list. Different
methods are available depending on the chosen filter constraints.

2-791

filterbuilder

Structure
Select filter structure. The possible choices are:

• Direct-form I SOS

• Direct-form II SOS

• Direct-form I transposed SOS

• Direct-form II transposed SOS

Scale SOS filter coefficients to reduce chance of overflow
Select the check box to scale the filter coefficients.

2-792

filtstates.cic

Purpose Store CIC filter states

Description filtstates.cic objects hold the states information for CIC filters.
Once you create a CIC filter, the states for the filter are stored in
filtstates.cic objects, and you can access them and change them
as you would any property of the filter. This arrangement parallels
that of the filtstates object that IIR direct-form I filters use (refer to
filtstates for more information).

Each States property in the CIC filter comprises two properties —
Numerator and Comb — that hold filtstates.cic objects. Within the
filtstates.cic objects are the numerator-related and comb-related
filter states. The states are column vectors, where each column
represents the states for one section of the filter. For example, a CIC
filter with four decimator sections and four interpolator sections has
filtstates.cic objects that contain four columns of states each.

Examples To show you the filtstates.cic object, create a CIC decimator and
filter a signal.

hm=mfilt.cicdecim(5,2,4)

hm =

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'

DifferentialDelay: 2
NumberOfSections: 4
DecimationFactor: 5
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

SectionWordLengthMode: 'MinWordLengths'

hm.persistentMemory=true

2-793

filtstates.cic

hm =

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'

DifferentialDelay: 2
NumberOfSections: 4
DecimationFactor: 5
PersistentMemory: true

States: Integrator: [4x1 States]
Comb: [4x1 States]

InputOffset: 0

InputWordLength: 16
InputFracLength: 15

SectionWordLengthMode: 'MinWordLengths'

Use hm to filter some input data.

fs = 44.1e3; % Original sampling frequency: 44.1kHz.

n = 0:10239; % 10240 samples, 0.232 second long signal.

x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1kHz.

y=filter(hm,x)

hm has nonzero states now.

s=hm.states

s =

Integrator: [4x1 States]
Comb: [4x1 States]

s.Integrator

ans =

2-794

filtstates.cic

1.0e+003 *

0.0043
-2.0347
-0.4175
0.8206

s.Comb

ans =

1.0e+003 *

-3.1301
-0.8493
-2.5474
1.7888

-1.6253
3.1981
0.4729
3.4559

You can use int to see the states as 32-bit integers.

int(s.Integrator)

ans =

142435
-8334019
-427469
210081

whos shows you the filtstates.cic object.

whos
Name Size Bytes Class

2-795

filtstates.cic

Fs 1x1 8 double array
ans 4x1 16 int32 array
hm 1x1 mfilt.cicdecim
n 1x10240 81920 double array
s 1x1 filtstates.cic
x 1x10240 81920 double array
y 1x2048 embedded.fi

Grand total is 20488 elements using 163864 bytes

See Also mfilt, mfilt.cicdecim, mfilt.cicinterp

filtstates in Signal Processing Toolbox documentation

2-796

fircband

Purpose Constrained-band equiripple FIR filter

Syntax b = fircband(n,f,a,w,c)
b = fircband(n,f,a,s)
b = fircband(...,'1')
b = fircband(...,'minphase')
b = fircband(..., 'check')
b = fircband(...,{lgrid})
[b,err] = fircband(...)
[b,err,res] = fircband(...)

Description fircband is a minimax filter design algorithm that you use to design
the following types of real FIR filters:

• Types 1-4 linear phase

- Type 1 is even order, symmetric

- Type 2 is odd order, symmetric

- Type 3 is even order, antisymmetric

- Type 4 is odd order, antisymmetric

• Minimum phase

• Maximum phase,

• Minimum order (even or odd), extra ripple

• Maximal ripple

• Constrained ripple

• Single-point band (notching and peaking)

• Forced gain

• Arbitrary shape frequency response curve filters

b = fircband(n,f,a,w,c) designs filters having constrained error
magnitudes (ripples). c is a cell array of strings of the same length as w.
The entries of c must be either ’c' to indicate that the corresponding

2-797

fircband

element in w is a constraint (the ripple for that band cannot exceed that
value) or ’w' indicating that the corresponding entry in w is a weight.
There must be at least one unconstrained band — c must contain at
least one w entry. For instance, Example 1 below uses a weight of one
in the passband, and constrains the stopband ripple not to exceed 0.2
(about 14 dB).

A hint about using constrained values: if your constrained filter does
not touch the constraints, increase the error weighting you apply to
the unconstrained bands.

Notice that, when you work with constrained stopbands, you enter
the stopband constraint according to the standard conversion formula
for power — the resulting filter attenuation or constraint equals
20*log(constraint) where constraint is the value you enter in the
function. For example, to set 20 dB of attenuation, use a value for the
constraint equal to 0.1. This applies to constrained stopbands only.

b = fircband(n,f,a,s) is used to design filters with special properties
at certain frequency points. s is a cell array of strings and must be the
same length as f and a. Entries of s must be one of:

• 'n' — normal frequency point.

• 's' — single-point band. The frequency band is given by a single
point. You must specify the corresponding gain at this frequency
point in a.

• 'f' — forced frequency point. Forces the gain at the specified
frequency band to be the value specified.

• 'i' — indeterminate frequency point. Use this argument when
bands abut one another (no transition region).

b = fircband(...,'1') designs a type 1 filter (even-order symmetric).
You could also specify type 2 (odd-order symmetric), type 3 (even-order
antisymmetric), or type 4 (odd-order antisymmetric) filters. Note there
are restrictions on a at f = 0 or f = 1 for types 2, 3, and 4.

2-798

fircband

b = fircband(...,'minphase') designs a minimum-phase FIR filter.
There is also ’maxphase’.

b = fircband(..., 'check') produces a warning when there are
potential transition-region anomalies in the filter response.

b = fircband(...,{lgrid}), where {lgrid} is a scalar cell array
containing an integer, controls the density of the frequency grid.

[b,err] = fircband(...) returns the unweighted approximation
error magnitudes. err has one element for each independent
approximation error.

[b,err,res] = fircband(...) returns a structure res of optional
results computed by fircband, and contains the following fields:

Structure Field Contents

res.fgrid Vector containing the frequency grid used in the
filter design optimization

res.des Desired response on fgrid

res.wt Weights on fgrid

res.h Actual frequency response on the frequency grid

res.error Error at each point (desired response - actual
response) on the frequency grid

res.iextr Vector of indices into fgrid of external
frequencies

res.fextr Vector of extremely frequencies

res.order Filter order

2-799

fircband

Structure Field Contents

res.edgecheck Transition-region anomaly check. One
element per band edge. Element values
have the following meanings: 1 = OK ,
0 = probable transition-region anomaly ,
-1 = edge not checked. Computed when you
specify the 'check' input option in the function
syntax.

res.iterations Number of Remez iterations for the optimization

res.evals Number of function evaluations for the
optimization

Examples Two examples of designing filters with constrained bands.

Example 1

design a 12th-order lowpass filter with a constraint on the filter
response.

b = fircband(12,[0 0.4 0.5 1], [1 1 0 0], ...
[1 0.2], {'w' 'c'});

Using fvtool to display the result b shows you the response of the
filter you designed.

2-800

fircband

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Example 2

design two filters of different order with the stopband constrained to 60
dB. Use excess order (80) in the second filter to improve the passband
ripple.

b1=fircband(60,[0 .2 .25 1],[1 1 0 0],...
[1 .001],{'w','c'});
b2=fircband(80,[0 .2 .25 1],[1 1 0 0],...
[1 .001],{'w','c'});
fvtool(b1,1,b2,1)

To set the stopband constraint to 60 dB, enter 0.001, since
20*log(0.001) = -60, or 60 dB of signal attenuation.

2-801

fircband

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Filter Order = 60

Filter Order = 80

See Also firceqrip, firgr, firls

firpm in Signal Processing Toolbox

Also refer to "Constrained Band Equiripple FIR Filter Design" in Demos

2-802

fireqint

Purpose Equiripple FIR interpolators

Syntax b = fireqint(n,l,alpha)
b = fireqint(n,l,alpha,w)
b = fireqint('minorder',l,alpha,r)
b = fireqint({'minorder',initord},l,alpha,r)

Description b = fireqint(n,l,alpha) designs an FIR equiripple filter useful
for interpolating input signals. n is the filter order and it must be an
integer. l, also an integer, is the interpolation factor. alpha is the
bandlimitedness factor, identical to the same feature in intfilt.

alpha is inversely proportional to the transition bandwidth of the filter.
It also affects the bandwith of the don’t-care regions in the stopband.
Specifying alpha allows you to control how much of the Nyquist interval
your input signal occupies. This can be beneficial for signals to be
interpolated because it allows you to increase the transition band
width without affecting the interpolation, resulting in better stopband
attenuation for a given l. If you set alpha to 1, fireqint assumes that
your signal occupies the entire Nyquist interval. Setting alpha to a
value less than one allows for don’t-care regions in the stopband. For
example, if your input occupies half the Nyquist interval, you could
set alpha to 0.5.

The signal to be interpolated is assumed to have zero (or negligible)
power in the frequency band between (alpha*π) and π. alpha must
therefore be a positive scalar between 0 and 1. fireqint treat such
bands as don’t-care regions for assessing filter design.

b = fireqint(n,l,alpha,w) allows you to specify a vector of weights
in w. The number of weights required in w is given by 1 + floor(l/2).
The weights in w are applied to the passband ripple and stopband
attenuations. Using weights (values between 0 and 1) enables you to
specify different attenuations in different parts of the stopband, as well
as providing the ability to adjust the compromise between passband
ripple and stopband attenuation.

b = fireqint('minorder',l,alpha,r) allows you to design a
minimum-order filter that meets the design specifications. r is a vector

2-803

fireqint

of maximum deviations or ripples from the ideal filter magnitude
response. When you use the input argument minorder, you must
provide the vector r. The number of elements required in r is given
by 1 + floor(l/2).

b = fireqint({'minorder',initord},l,alpha,r) adds the argument
initord so you can provide an initial estimate of the filter order. Any
positive integer is valid here. Again, you must provide r, the vector
of maximum deviations or ripples, from the ideal filter magnitude
response.

Examples Design a minimum order interpolation filter for l = 6 and alpha = 0.8.
A vector of ripples must be supplied with the input argument minorder.

b = fireqint('minorder',6,.8,[0.01 .1 .05 .02]);

hm = mfilt.firinterp(6,b); % Create a polyphase interpolator filter

zerophase(hm);

Here is the resulting plot of the zerophase response for hm.

2-804

fireqint

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−1

0

1

2

3

4

5

6

Normalized Frequency (×π rad/sample)

Z
er

o−
ph

as
e

Zerophase Response

For hm, the minimum order filter with the requested design
specifications, here is the filter information.

hm =

FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
Arithmetic: 'double'
Numerator: [1x70 double]

InterpolationFactor: 6
PersistentMemory: false

See Also firgr, firhalfband, firls, firnyquist, mfilt

intfilt in Signal Processing Toolbox documentation

2-805

firceqrip

Purpose Constrained, equiripple FIR filter

Syntax hd = firceqrip(n,wo,del)
hd = firceqrip(...,'slope',r)
hd = firceqrip(...,'passedge')
hd = firceqrip(...,'stopedge')
hd = firceqrip(...,'high')
hd = firceqrip(...,'min')
hd = firceqrip(...,'invsinc',c))

Description hd = firceqrip(n,wo,del) design an order n filter (filter length equal
n + 1) lowpass FIR filter with linear phase.

firceqrip produces the same equiripple lowpass filters that firpm
produces using the Parks-McClellan algorithm. The difference is how
you specify the filter characteristics for the function.

Input argument wo specifies the cutoff frequency. The two-element
vector del specifies the peak or maximum error allowed in the
passband and stopbands. Enter [d1 d2] for del where d1 sets the
passband error and d2 sets the stopband error. Since firceqrip works
in the normalized frequency domain, you must set wo to be between
0 and 1 (0 < wo < 1).

hd = firceqrip(...,'slope',r) uses the input keyword ’slope’ and
input argument r to design a filter with a stopband that does not
demonstrate equiripple characteristics. r determines the slope of the
stopband in decibels when r > 0.

In this constrained equiripple design approach, you can specify a
stopband slope (increasing attenuation with increasing frequency).
Enter your desired slope in decibels as a positive value. Larger slope
values create increasing attenuation of the stopband as frequency
increases.

Slope is defined in the following ways:

• For filters specified in linear frequency, the slope is defined over
every Fs/2 frequency bands.

2-806

firceqrip

• For filters specified in normalized frequency, the slope is defined
over π rad/sample.

Here is a description of how slope works. The algorithm defines slope
in decibels per half of the Nyquist interval. If you are working in
normalized frequency and you set the slope to 40 dB, the stopband
attenuation increases by 40 dB every rad/sample.

Try setting r to 10 to see the effect on the filter frequency response. In
the Examples section, example 3 designs a filter with r equal to 20.

hd = firceqrip(...,'passedge') designs a filter where wo specifies
the frequency at which the passband starts to roll off.

hd = firceqrip(...,'stopedge') designs a filter where wo specifies
the frequency at which the stopband begins.

hd = firceqrip(...,'high') designs a high pass FIR filter instead of
a lowpass filter.

hd = firceqrip(...,'min') designs an FIR filter with minimum
phase.

hd = firceqrip(...,'invsinc',c)) designs a lowpass filter whose
passband has the shape of the inverse sinc function. For this syntax,
keyword invsinc applies theinverse sinc function as defined by
whether c is a scalar or a two-element vector:

• When you use c as a scalar with the invsinc keyword, firceqrip
applies the function 1/sinc(c*w), where w is the normalized frequency,
to the passband.

• When you use c as a two-element vector entered as [c p], with the
invsinc keyword, firceqrip applies the function 1/sinc(c*w)p to the
passband, where w is the normalized frequency.

In both cases, c must meet the condition c < 1/wo.

When you use a cascaded-integrated comb (CIC) filter in series with
this FIR filter, argument p lets you compensate for the droop in the
passband of the CIC filter. Setting p equal to the number of stages

2-807

firceqrip

in your CIC generally produces an FIR filter whose passband neatly
compensates for the CIC passband shape.

To let you specify precisely the FIR filter to design, use any or all of
the optional input arguments together. Any ordering of the optional
arguments works — order is not important in the function call. Refer to
Examples 3 and 4 to see multiple optional input arguments being used.

Note If the wo you specify is too small or too large, or if either c or p
is too large, your filter specifications may be unfeasible, causing the
design algorithm to fail to generate your filter.

Examples To introduce a few of the variations on FIR filters that you design with
firceqrip, these five examples cover both the default syntax hd =
firceqrip(n,wo,del) and some of the optional input arguments. For
each example, the input arguments n, wo, and del remain the same.

Example 1

Design an order = 30 FIR filter without using optional input arguments
or keywords.

hd = firceqrip(n,wo,del); fvtool(hd)

Both the phase and magnitude response for the resulting lowpass filter
appear in the plot shown here.

2-808

firceqrip

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−90

−70

−50

−30

−10

10

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1400

−1120

−840

−560

−280

0

Normalized Frequency (×π rad/sample)

P
ha

se
(d

eg
re

es
)

Filter #1: Discrete filter magnitude
Filter #1: Discrete filter phase

Example 2

Design an order = 30 FIR filter with the stopedge keyword to define
the response at the edge of the filter stopband.

hd = firceqrip(n,wo,del,'stopedge'); fvtool(hd,1)

Example 3

Design an order = 30 FIR filter with the slope keyword and r = 20.

hd = firceqrip(n,wo,del,'slope',20,'stopedge'); fvtool(hd)

2-809

firceqrip

Example 4

Design an order = 30 FIR filter defining the stopband and specifying
that the resulting filter is minimum phase with the min keyword.

hd = firceqrip(n,wo,del,'stopedge','min'); fvtool(hd)

Comparing this filter to the filter in Example 1, notice that the cutoff
frequency wo = 0.4 now applies to the edge of the stopband rather than
the point at which the frequency response magnitude is 0.5.

Viewing the zero-pole plot shown here reveals this is a minimum phase
FIR filter — the zeros lie on or inside the unit circle, z = 1.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

30

Real Part

Im
ag

in
ar

y
P

ar
t

Pole/Zero Plot

Filter #1: Zeros
Filter #1: Poles

2-810

firceqrip

Example 5

Design an order = 30 FIR filter with the invsinc keyword to shape the
filter passband with an inverse sinc function.

hd = firceqrip(n,wo,del,'invsinc',[2 1.5]); fvtool(hd,1)

With the inverse sinc function being applied defined as 1/sinc(2*w)1.5,
the figure shows the reshaping of the passband that results from using
the invsinc keyword option, and entering c as the two-element vector
[2 1.5].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

2-811

firceqrip

See Also firhalfband, firnyquist, firgr, ifir, iirgrpdelay, iirlpnorm,
iirlpnormc

fircls, firls, firpm in Signal Processing Toolbox documentation

2-812

firgr

Purpose Parks-McClellan FIR filter

Syntax b = firgr(n,f,a,w)
b = firgr(n,f,a,'hilbert')
b = firgr(m,f,a,r),
b = firgr({m,ni},f,a,r)
b = firgr(n,f,a,w,e)
b = firgr(n,f,a,s)
b = firgr(n,f,a,s,w,e)
b = firgr(...,'1')
b = firgr(...,'minphase')
b = firgr(..., 'check')
b = firgr(...,{lgrid}),
[b,err] = firgr(...)
[b,err,res] = firgr(...)
b = firgr(n,f,fresp,w)
b = firgr(n,f,{fresp,p1,p2,...},w)
b = firgr(n,f,a,w)

Description firgr is a minimax filter design algorithm you use to design the
following types of real FIR filters:

• Types 1-4 linear phase:

- Type 1 is even order, symmetric

- Type 2 is odd order, symmetric

- Type 3 is even order, antisymmetric

- Type 4 is odd order, antisymmetric

• Minimum phase

• Maximum phase

• Minimum order (even or odd)

• Extra ripple

• Maximal ripple

2-813

firgr

• Constrained ripple

• Single-point band (notching and peaking)

• Forced gain

• Arbitrary shape frequency response curve filters

b = firgr(n,f,a,w) returns a length n+1 linear phase FIR filter which
has the best approximation to the desired frequency response described
by f and a in the minimax sense. w is a vector of weights, one per band.
When you omit w, all bands are weighted equally. For more information
on the input arguments, refer to firpm in Signal Processing Toolbox
User’s Guide.

b = firgr(n,f,a,'hilbert') and b =
firgr(n,f,a,'differentiator') design FIR Hilbert transformers
and differentiators. For more information on designing these filters,
refer to firpm in Signal Processing Toolbox User’s Guide.

b = firgr(m,f,a,r), where m is one of ’minorder’, ’mineven’ or
’minodd’, designs filters repeatedly until the minimum order filter,
as specified in m, that meets the specifications is found. r is a vector
containing the peak ripple per frequency band. You must specify r.
When you specify ’mineven’ or ’minodd’, the minimum even or odd order
filter is found.

b = firgr({m,ni},f,a,r) where m is one of ’minorder’, ’mineven’ or
’minodd’, uses ni as the initial estimate of the filter order. ni is optional
for common filter designs, but it must be specified for designs in which
firpmord cannot be used, such as while designing differentiators or
Hilbert transformers.

b = firgr(n,f,a,w,e) specifies independent approximation errors
for different bands. Use this syntax to design extra ripple or maximal
ripple filters. These filters have interesting properties such as having
the minimum transition width. e is a cell array of strings specifying
the approximation errors to use. Its length must equal the number of
bands. Entries of e must be in the form ’e#’ where # indicates which
approximation error to use for the corresponding band. For example,

2-814

firgr

when e = {'e1','e2','e1'}, the first and third bands use the same
approximation error 'e1' and the second band uses a different one
'e2'. Note that when all bands use the same approximation error,
such as {'e1','e1','e1',...}, it is equivalent to omitting e, as in b
= firgr(n,f,a,w).

b = firgr(n,f,a,s) is used to design filters with special properties at
certain frequency points. s is a cell array of strings and must be the
same length as f and a. Entries of s must be one of:

• 'n' — normal frequency point.

• 's' — single-point band. The frequency “band” is given by a single
point. The corresponding gain at this frequency point must be
specified in a.

• 'f' — forced frequency point. Forces the gain at the specified
frequency band to be the value specified.

• 'i' — indeterminate frequency point. Use this argument when
adjacent bands abut one another (no transition region).

For example, the following command designs a bandstop filter with
zero-valued single-point stop bands (notches) at 0.25 and 0.55.

b = firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],...

[1 1 0 1 1 0 1 1],{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'})

b = firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1
1],...{'n' 'i' 'f' 'n' 'n' 'n'}) designs a highpass filter with the
gain at 0.06 forced to be zero. The band edge at 0.055 is indeterminate
since the first two bands actually touch. The other band edges are
normal.

b = firgr(n,f,a,s,w,e) specifies weights and independent
approximation errors for filters with special properties. The weights
and properties are included in vectors w and e. Sometimes, you may
need to use independent approximation errors to get designs with forced
values to converge. For example,

2-815

firgr

b = firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});

b = firgr(...,'1') designs a type 1 filter (even-order symmetric).
You can specify type 2 (odd-order symmetric), type 3 (even-order
antisymmetric), and type 4 (odd-order antisymmetric) filters as well.
Note that restrictions apply to a at f = 0 or f = 1 for FIR filter types
2, 3, and 4.

b = firgr(...,'minphase') designs a minimum-phase FIR filter. You
can use the argument 'maxphase' to design a maximum phase FIR
filter.

b = firgr(..., 'check') returns a warning when there are potential
transition-region anomalies.

b = firgr(...,{lgrid}), where {lgrid} is a scalar cell array. The
value of the scalar controls the density of the frequency grid by setting
the number of samples used along the frequency axis.

[b,err] = firgr(...) returns the unweighted approximation
error magnitudes. err contains one element for each independent
approximation error returned by the function.

[b,err,res] = firgr(...) returns the structure res comprising
optional results computed by firgr. res contains the following fields.

Structure Field Contents

res.fgrid Vector containing the frequency grid used in
the filter design optimization

res.des Desired response on fgrid

res.wt Weights on fgrid

res.h Actual frequency response on the frequency
grid

res.error Error at each point (desired response - actual
response) on the frequency grid

2-816

firgr

Structure Field Contents

res.iextr Vector of indices into fgrid of external
frequencies

res.fextr Vector of external frequencies

res.order Filter order

res.edgecheck Transition-region anomaly check. One
element per band edge. Element values
have the following meanings: 1 = OK,
0 = probable transition-region anomaly,
-1 = edge not checked. Computed when
you specify the 'check' input option in the
function syntax.

res.iterations Number of s iterations for the optimization

res.evals Number of function evaluations for the
optimization

firgr is also a “function function,” allowing you to write a function that
defines the desired frequency response.

b = firgr(n,f,fresp,w) returns a length N + 1 FIR filter which has
the best approximation to the desired frequency response as returned
by the user-defined function fresp. Use the following firgr syntax to
call fresp:

[dh,dw] = fresp(n,f,gf,w)

where:

• fresp is the string variable that identifies the function that you use
to define your desired filter frequency response.

• n is the filter order.

• f is the vector of frequency band edges which must appear
monotonically between 0 and 1, where 1 is one-half of the sampling
frequency. The frequency bands span f(k) to f(k+1) for k odd. The

2-817

firgr

intervals f(k+1) to f(k+2) for k odd are “transition bands” or “don’t
care” regions during optimization.

• gf is a vector of grid points that have been chosen over each specified
frequency band by firgr, and determines the frequencies at which
firgr evaluates the response function.

• w is a vector of real, positive weights, one per band, for use during
optimization. w is optional in the call to firgr. If you do not specify
w, it is set to unity weighting before being passed to fresp.

• dh and dw are the desired frequency response and optimization
weight vectors, evaluated at each frequency in grid gf.

firgr includes a predefined frequency response function named
'firpmfrf2'. You can write your own based on the simpler 'firpmfrf'.
See the help for private/firpmfrf for more information.

b = firgr(n,f,{fresp,p1,p2,...},w) specifies optional arguments
p1, p2,..., pn to be passed to the response function fresp.

b = firgr(n,f,a,w) is a synonym for b =
firgr(n,f,{'firpmfrf2',a},w), where a is a vector
containing your specified response amplitudes at each band edge in f.
By default, firgr designs symmetric (even) FIR filters. 'firpmfrf2' is
the predefined frequency response function. If you do not specify your
own frequency response function (the fresp string variable), firgr
uses ’firpmfrf2'.

b = firgr(...,'h') and b = firgr(...,'d') design antisymmetric
(odd) filters. When you omit the 'h' or 'd' arguments from the firgr
command syntax, each frequency response function fresp can tell
firgr to design either an even or odd filter. Use the command syntax
sym = fresp('defaults',{n,f,[],w,p1,p2,...}).

firgr expects fresp to return sym = 'even' or sym = 'odd'. If fresp
does not support this call, firgr assumes even symmetry.

For more information about the input arguments to firgr, refer to
firpm.

2-818

firgr

Examples These examples demonstrate some filters you might design using firgr.

Example 1

design an FIR filter with two single-band notches at 0.25 and 0.55

b1 = firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],[1 1 0 1 1 0 1 1],...

{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'});

Example 2

design a highpass filter whose gain at 0.06 is forced to be zero. The gain
at 0.055 is indeterminate since it should abut the band.

b2 = firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'});

Example 3

design a second highpass filter with forced values and independent
approximation errors.

b3 = firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1], ...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});

Use the filter visualization tool to view the results of the filters created
in these examples.

fvtool(b1,1,b2,1,b3,1)

Here is the figure from FVTool.

2-819

firgr

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Filter b1

Filter b2

Filter b3

See Also butter, cheby1, cheby2, ellip, freqz, filter, firls, fircls, and
firpm in Signal Processing Toolbox documentation

References Shpak, D.J. and A. Antoniou, “A generalized Remez method for the
design of FIR digital filters,” IEEE Trans. Circuits and Systems, pp.
161-174, Feb. 1990.

2-820

firhalfband

Purpose Halfband FIR filter

Syntax b = firhalfband(n,fp)
b = firhalfband(n,win)
b = firhalfband(n,dev,'dev')
b = firhalfband('minorder',fp,dev)
b = firhalfband('minorder',fp,dev,'kaiser')
b = firhalfband(...,'high')
b = firhalfband(...,'minphase')

Description b = firhalfband(n,fp) designs a lowpass halfband FIR filter of order
n with an equiripple characteristic. n must be an even integer. fp
determines the passband edge frequency, and it must satisfy 0 < fp <
1/2, where 1/2 corresponds to rad/sample.

b = firhalfband(n,win) designs a lowpass Nth-order filter using the
truncated, windowed-impulse response method instead of the equiripple
method. win is an n+1 length vector. The ideal impulse response is
truncated to length n + 1, and then multiplied point-by-point with the
window specified in win.

b = firhalfband(n,dev,'dev') designs an Nth-order lowpass
halfband filter with an equiripple characteristic. Input argument dev
sets the value for the maximum passband and stopband ripple allowed.

b = firhalfband('minorder',fp,dev) designs a lowpass
minimum-order filter, with passband edge fp. The peak ripple is
constrained by the scalar dev. This design uses the equiripple method.

b = firhalfband('minorder',fp,dev,'kaiser') designs a lowpass
minimum-order filter, with passband edge fp. The peak ripple is
constrained by the scalar dev. This design uses the Kaiser window
method.

b = firhalfband(...,'high') returns a highpass halfband FIR filter.

b = firhalfband(...,'minphase') designs a minimum-phase FIR
filter such that the filter is a spectral factor of a halfband filter
(recall that h = conv(b,fliplr(b)) is a halfband filter). This can
be useful for designing perfect reconstruction, two-channel FIR filter

2-821

firhalfband

banks. The minphase option for firhalfband is not available for the
window-based halfband filter designs — b = firhalfband(n,win) and
b = firhalfband('minorder ',fp,dev,'kaiser').

In the minimum phase cases, the filter order must be odd.

Examples This example designs a minimum order halfband filter with specified
maximum ripple:

b = firhalfband('minorder',.45,0.0001);
h = dfilt.dfsymfir(b);
impz(b) % Impulse response is zero for every other sample

0 10 20 30 40 50 60 70 80 90
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Samples

A
m

pl
itu

de

Impulse Response

The next example designs a halfband filter with specified maximum
ripple of 0.0001 dB in the pass and stop bands.

2-822

firhalfband

b = firhalfband(98,0.0001,'dev');
h = mfilt.firdecim(2,b); % Create a polyphase decimator
freqz(h); % 80 dB attenuation in the stopband

See Also firnyquist, firgr

fir1, firls, firpm in Signal Processing Toolbox documentation

References Saramaki, T, “Finite Impulse Response Filter Design,” Handbook
for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds.
Wiley-Interscience, N.Y., 1993, Chapter 4.

2-823

firlp2lp

Purpose Convert FIR Type I lowpass to FIR Type 1 lowpass with inverse
bandwidth

Syntax g = firlp2lp(b)

Description g = firlp2lp(b) transforms the Type I lowpass FIR filter b with
zero-phase response Hr(w) to a Type I lowpass FIR filter g with
zero-phase response [1 - Hr(π-w)].

When b is a narrowband filter, g will be a wideband filter and vice versa.
The passband and stopband ripples of g will be equal to the stopband
and passband ripples of b.

Examples Overlay the original narrowband lowpass and the resulting wideband
lowpass

b = firgr(36,[0 .2 .25 1],[1 1 0 0],[1 5]);
zerophase(b);
hold on
h = firlp2lp(b);
zerophase(h); hold off

See Also firlp2hp

zerophase in Signal Processing Toolbox documentation

References Saramaki, T, Finite Impulse Response Filter Design, Handbook
for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds.
Wiley-Interscience, N.Y., 1993, Chapter 4.

2-824

firlp2hp

Purpose Convert FIR lowpass filter to Type I FIR highpass filter

Syntax g = firlp2hp(b)
g = firlp2hp(b,'narrow')
g = firlp2hp(b,'wide')

Description g = firlp2hp(b) transforms the lowpass FIR filter b into a Type I
highpass FIR filter g with zero-phase response Hr(π-w). Filter b can be
any FIR filter, including a nonlinear-phase filter.

The passband and stopband ripples of g will be equal to the passband
and stopband ripples of b.

g = firlp2hp(b,'narrow') transforms the lowpass FIR filter b into
a Type I narrow band highpass FIR filter g with zero-phase response
Hr(π-w). b can be any FIR filter, including a nonlinear-phase filter.

g = firlp2hp(b,'wide') transforms the Type I lowpass FIR filter b
with zero-phase response Hr(w) into a Type I wide band highpass FIR
filter g with zero-phase response 1 - Hr(w). Note the restriction that b
must be a Type I linear-phase filter.

For this case, the passband and stopband ripples of g will be equal to
the stopband and passband ripples of b.

Examples Overlay the original narrowband lowpass (the prototype filter) and the
post-conversion narrowband highpass and wideband highpass filters to
compare and assess the conversion. The following plot shows the results.

b = firgr(36,[0 .2 .25 1],[1 1 0 0],[1 3]);
zerophase(b); hold on;
h = firlp2hp(b);
zerophase(h);
g = firlp2hp(b,'wide');
zerophase(g); hold off

2-825

firlp2hp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Normalized frequency (× π rad/sample)

A
m

pl
itu

de

Prototype lowpass
Narrowband highpass
Wideband highpass

See Also firlp2lp

zerophase in Signal Processing Toolbox documentation

References Saramaki, T, Finite Impulse Response Filter Design, Handbook
for Digital Signal ProcessingMitra, S.K. and J.F. Kaiser Eds.
Wiley-Interscience, N.Y., 1993, Chapter 4.

2-826

firlpnorm

Purpose Least P-norm optimal FIR filter

Syntax b = firlpnorm(n,f,edges,a)
b = firlpnorm(n,f,edges,a,w)
b = firlpnorm(n,f,edges,a,w,p)
b = firlpnorm(n,f,edges,a,w,p,dens)
b = firlpnorm(n,f,edges,a,w,p,dens,initnum)
b = firlpnorm(...,'minphase')
[b,err] = firlpnorm(...)

Description b = firlpnorm(n,f,edges,a) returns a filter of numerator order n
which represents the best approximation to the frequency response
described by f and a in the least-Pth norm sense. P is set to 128 by
default, which essentially equivalent to the infinity norm. Vector edges
specifies the band-edge frequencies for multiband designs. firlpnorm
uses an unconstrained quasi-Newton algorithm to design the specified
filter.

f and a must have the same number of elements, which can exceed the
number of elements in edges. This lets you specify filters with any gain
contour within each band. However, the frequencies in edges must also
be in vector f. Always use freqz to check the resulting filter.

Note firlpnorm uses a nonlinear optimization routine that may not
converge in some filter design cases. Furthermore the algorithm is not
well-suited for certain large-order (order > 100) filter designs.

b = firlpnorm(n,f,edges,a,w) uses the weights in w to weight the
error. w has one entry per frequency point (the same length as f and
a) which tells firlpnorm how much emphasis to put on minimizing
the error in the vicinity of each frequency point relative to the other
points. For example,

b = firlpnorm(20,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

2-827

firlpnorm

designs a lowpass filter with a peak of 1.6 within the passband, and
with emphasis placed on minimizing the error in the stopband.

b = firlpnorm(n,f,edges,a,w,p) where p is a two-element vector
[pmin pmax] lets you specify the minimum and maximum values of p
used in the least-pth algorithm. Default is [2 128] which essentially
yields the L-infinity, or Chebyshev, norm. pmin and pmax should be even
numbers. The design algorithm starts optimizing the filter with pmin
and moves toward an optimal filter in the pmax sense. When p is the
string ’inspect’, firlpnorm does not optimize the resulting filter. You
might use this feature to inspect the initial zero placement.

b = firlpnorm(n,f,edges,a,w,p,dens) specifies the grid density
dens used in the optimization. The number of grid points is
[dens*(n+1)]. The default is 20. You can specify dens as a
single-element cell array. The grid is equally spaced.

b = firlpnorm(n,f,edges,a,w,p,dens,initnum) lets you determine
the initial estimate of the filter numerator coefficients in vector initnum.
This can prove helpful for difficult optimization problems. The pole-zero
editor in Signal Processing Toolbox can be used for generating initnum.

b = firlpnorm(...,'minphase') where string ’minphase’ is the last
argument in the argument list generates a minimum-phase FIR filter.
By default, firlpnorm design mixed-phase filters. Specifying input
option ’minphase’ causes firlpnorm to use a different optimization
method to design the minimum-phase filter. As a result of the different
optimization used, the minimum-phase filter can yield slightly different
results.

[b,err] = firlpnorm(...) returns the least-pth approximation error
err.

Examples To demonstrate firlpnorm, here are two examples — the first designs a
lowpass filter and the second a highpass, minimum-phase filter.

% Lowpass filter with a peak of 1.4 in the passband.

b = firlpnorm(22,[0 .15 .4 .5 1],[0 .4 .5 1],[1 1.4 1 0 0],...

[1 1 1 2 2]);

2-828

firlpnorm

fvtool(b)

From the figure you see the resulting filter is lowpass, with the desired
1.4 peak in the passband (notice the 1.4 specified in vector a).

Now for the minimum-phase filter.

% Highpass minimum-phase filter optimized for the 4-norm.

b = firlpnorm(44,[0 .4 .45 1],[0 .4 .45 1],[0 0 1 1],[5 1 1 1],...

[2 4],'minphase');

fvtool(b)

As shown in the next figure, this is a minimum-phase, highpass filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−180

−140

−100

−60

−20

20

M
ag

ni
tu

de
 (

dB
)

Magnitude and Phase Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−800

−640

−480

−320

−160

0

rad/sample

P
ha

se
 (

de
gr

ee
s)

Filter #1: Discrete filter magnitude
Filter #1: Discrete filter phase

The next zero-pole plot shows the minimum phase nature more clearly.

2-829

firlpnorm

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real Part

Im
ag

in
ar

y
P

ar
t

Zero−Pole Plot of Minimum Phase FIR Filter

244

See Also firgr, iirgrpdelay, iirlpnorm, iirlpnormc

filter, fvtool, freqz, zplane in Signal Processing Toolbox
documentation

References Saramaki, T, Finite Impulse Response Filter Design, Handbook
for Digital Signal ProcessingMitra, S.K. and J.F. Kaiser Eds.
Wiley-Interscience, N.Y., 1993, Chapter 4.

2-830

firls

Purpose RLS filter from specification object

Syntax hd = firls(d)

Description hd = firls(d) designs a discrete-time FIR filter using a least-squares
error minimization method. Only halfband and interpolation
specifications objects with Specification of ’n,tw’ or 'pl,tw' work as
specifications objects for firls.

hd is either a dfilt object (a single-rate digital filter) or an mfilt object
(a multirate digital filter) depending on the Specification property of
the filter specification object d and the filter specification object type —
halfband or interpolator.

Examples Here are two examples of using firls to design filters. The first
example returns a single-rate halfband filter using 120 as the filter
order..

d = fdesign.halfband('n,tw',120,.04);
hd = firls(d);

Now use firls to design a multirate halfband interpolator filter.

d = fdesign.interpolator(2,'pl,tw',60,.04); % 60 is the polyphase

% length.

hm = firls(d);

See Also equiripple, kaiserwin

2-831

firminphase

Purpose Minimum-phase FIR spectral factor

Syntax h = firminphase(b)
h = firminphase(b,nz)

Description h = firminphase(b) computes the minimum-phase FIR spectral factor
h of a linear-phase FIR filter b. Filter b must be real, have even order,
and have nonnegative zero-phase response.

h = firminphase(b,nz) specifies the number of zeros, nz, of b that lie
on the unit circle. You must specify nz as an even number to compute
the minimum-phase spectral factor because every root on the unit
circle must have even multiplicity. Including nz can help firminphase
calculate the required FIR spectral factor. Zeros with multiplicity
greater than two on the unit circle cause problems in the spectral factor
determination.

Note You can find the maximum-phase spectral factor, g, by reversing
h, such that , and .

Example This example designs a constrained least squares filter with a
nonnegative zero-phase response, and then uses firminphase to
compute the minimum-phase spectral factor.

f = [0 0.4 0.8 1];

a = [0 1 0];

up = [0.02 1.02 0.01];

lo = [0 0.98 0]; % The zeros insure nonnegative zero-phase resp.

n = 32;

b = fircls(n,f,a,up,lo);

h = firminphase(b);

See Also firgr

fircls, zerophase in Signal Processing Toolbox documentation

2-832

firminphase

References Saramaki, T, Finite Impulse Response Filter Design, Handbook
for Digital Signal ProcessingMitra, S.K. and J.F. Kaiser Eds.
Wiley-Interscience, N.Y., 1993, Chapter 4.

2-833

firnyquist

Purpose Lowpass Nyquist (Lth-band) FIR filter

Syntax b = firnyquist(n,l,r)
b = firnyquist('minorder',l,r,dev)
b = firnyquist(n,l,r,decay)
b = firnyquist(n,l,r,'nonnegative')
b = firnyquist(n,l,r,'minphase')

Description b = firnyquist(n,l,r) designs an Nth order, Lth band, Nyquist FIR
filter with a roll-off factor r and an equiripple characteristic.

The rolloff factor r is related to the normalized transition width tw by
(rad/sample). The order, n, must be even. l must be an

integer greater than one. If l is not specified, it defaults to 4. r must
satisfy 0< r < 1. If r is not specified, it defaults to 0.5.

b = firnyquist('minorder',l,r,dev) designs a minimum-order, Lth
band Nyquist FIR filter with a roll-off factor r using the Kaiser window.
The peak ripple is constrained by the scalar dev.

b = firnyquist(n,l,r,decay) designs an Nth order (n), Lth band
(l), Nyquist FIR filter where the scalar decay, specifies the rate of
decay in the stopband. decay must be nonnegative. If you omit or leave
it empty, decay defaults to 0 which yields an equiripple stopband. A
nonequiripple stopband (decay ≠0) may be desirable for decimation
purposes.

b = firnyquist(n,l,r,'nonnegative') returns an FIR filter with
nonnegative zero-phase response. This filter can be spectrally factored
into minimum-phase and maximum-phase “square-root” filters.
This allows you to use the spectral factors in applications such as
matched-filtering.

b = firnyquist(n,l,r,'minphase') returns the minimum-phase
spectral factor bmin of order n. bmin meets the condition
b=conv(bmin,bmax) so that b is an Lth band FIR Nyquist filter of
order 2n with filter roll-off factor r. Obtain bmax, the maximum phase
spectral factor by reversing the coefficients of bmin. For example, bmax
= bmin(end:-1:1).

2-834

firnyquist

Examples Example 1

This example designs a minimum phase factor of a Nyquist filter.

bmin = firnyquist(47,10,.45,'minphase');
b = firnyquist(2*47,10,.45,'nonnegative');
[h,w,s] = freqz(b); hmin = freqz(bmin);
fvtool(b,1,bmin,1);

Example 2

This example compares filters with different decay rates.

b1 = firnyquist(72,8,.3,0); % Equiripple
b2 = firnyquist(72,8,.3,.5);
b3 = firnyquist(72,8,.3,1);
fvtool(b1,1,b2,1,b3,1);

See Also firhalfband, firgr, firls, firminphase

firrcos, firls in Signal Processing Toolbox documentation

References T. Saramaki, Finite Impulse Response Filter Design, Handbook
for Digital Signal ProcessingMitra, S.K. and J.F. Kaiser Eds.
Wiley-Interscience, N.Y., 1993, Chapter 4.

2-835

firpr2chfb

Purpose Two-channel FIR filter bank for perfect reconstruction

Syntax [h0,h1,g0,g1] = firpr2chfb(n,fp)
[h0,h1,g0,g1] = firpr2chfb(n,dev,'dev')
[h0,h1,g0,g1] = firpr2chfb('minorder',fp,dev)

Description [h0,h1,g0,g1] = firpr2chfb(n,fp) designs four FIR filters for the
analysis sections (h0 and h1) and synthesis section is (g0 and g1) of a
two-channel perfect reconstruction filter bank. The design corresponds
to the orthogonal filter banks also known as power-symmetric filter
banks.

n is the order of all four filters. It must be an odd integer. fp is the
passband-edge for the lowpass filters h0 and g0. The passband-edge
argument fp must be less than 0.5. h1 and g1 are highpass filters with
the passband-edge given by (1-fp).

[h0,h1,g0,g1] = firpr2chfb(n,dev,'dev') designs the four filters
such that the maximum stopband ripple of h0 is given by the scalar
dev. Specify dev in linear units, not decibels. The stopband-ripple of h1
is also be given by dev, while the maximum stopband-ripple for both
g0 and g1 is (2*dev).

[h0,h1,g0,g1] = firpr2chfb('minorder',fp,dev) designs the four
filters such that h0 meets the passband-edge specification fp and
the stopband-ripple dev using minimum order filters to meet the
specification.

Algorithm For perfect reconstruction, filters that compose the filter bank must
fulfill these conditions.

Examples Design a filter bank with filters of order n equal to 99 and passband
edges of 0.45 and 0.55.

n = 99;
[h0,h1,g0,g1] = firpr2chfb(n,.45);
fvtool(h0,1,h1,1,g0,1,g1,1);

2-836

firpr2chfb

Here are the filters, showing clearly the passband edges.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Use the following stem plots to verify perfect reconstruction using the
filter bank created by firpr2chfb.

stem(1/2*conv(g0,h0)+1/2*conv(g1,h1))
n=0:n;
stem(1/2*conv((-1).^n.*h0,g0)+1/2*conv((-1).^n.*h1,g1))
stem(1/2*conv((-1).^n.*g0,h0)+1/2*conv((-1).^n.*g1,h1))
stem(1/2*conv((-1).^n.*g0,(-1).^n.*h0)+...
1/2*conv((-1).^n.*g1,(-1).^n.*h1))
stem(conv((-1).^n.*h1,h0)-conv((-1).^n.*h0,h1))

See Also firceqrip, firgr, firhalfband, firnyquist

2-837

firtype

Purpose Type of linear phase FIR filter

Syntax t = firtype(hd)
t = firtype(hm)

Description The next sections describe common firtype operation with
discrete-time and multirate filters.

Discrete-Time Filters

t = firtype(hd) determines the type (1 through 4) of a discrete-time
FIR filter object hd, returning the type number in t. Filter hd must be
both real and have linear phase.

Filter types 1 through 4 are defined as follows:

• Type 1 — even order symmetric coefficients

• Type 2 — odd order symmetric coefficients

• Type 3 — even order antisymmetric coefficients

• Type 4 — odd order antisymmetric coefficients

When hd is a cascade or parallel filter and therefore has multiple stages,
each stage must be a real FIR filter with linear phase. In this case, t is
a cell array containing the filter type of each stage.

Multirate Filters

t = firtype(hm) determines the type (1 through 4) of the multirate
filter object hm. The filter must be real and have linear phase.

Filter types 1 through 4 are defined as follows:

• Type 1 — even order symmetric coefficients

• Type 2 — odd order symmetric coefficients

• Type 3 — even order antisymmetric coefficients

• Type 4 — odd order antisymmetric coefficients

2-838

firtype

When hm has multiple sections, all sections must be real FIR filters
with linear phase. In this case, t is a cell array containing the filter
type of each section.

Examples Determine the type of the default interpolator for L=4.

l = 4;
hm = mfilt.firinterp(l);
firtype(hm)
ans =

1

See Also islinphase

2-839

freqrespest

Purpose Estimate fixed-point filter frequency response through filtering

Syntax [h,w] = freqrespest(hd,L)
[h,w] = freqrespest(hd,L,param1,value1,param2,
value2,...)
freqrespest(hd,L,opts)

Description [h,w] = freqrespest(hd,L) estimates the frequency response of filter
hd by filtering a set of input data and then forming the ratio between
output data and input data. The test input data comprises sinusoids
with uniformly distributed random frequencies.

Use this filter-based technique for judging the performance of fixed-point
filters. Because you can compare a filtering-based frequency response
estimate for a fixed-point filter to the response of a similar filter
that uses quantized coefficients, but applies floating-point arithmetic
internally. This comparison determines whether the fixed-point filter
performance closely matches the floating-point, quantized coefficients
version of the filter.

L is the number of trials to use to compute the estimate. If you do
not specify this value, L defaults to 10. More trials generates a more
accurate estimate of the response, but require more time to compute
the estimate.

h is the estimate of the complex frequency response. w contains the
vector of frequencies at which h is estimated.

Refer to example 2 for one way to plot h with w.

[h,w] = freqrespest(hd,L,param1,value1,param2,
value2,...) uses parameter value (PV) pairs as input arguments to
specify optional parameters for the test. These parameters are the valid
PV pairs. Enter the parameter names as string input arguments in
single quotation marks. The following table provides valid parameters
for [h, w].

2-840

freqrespest

Parameter Name
Default
Value Description

NFFT 512 Number of FFT points to use.

NormalizedFrequency true Indicates whether to use
normalized frequency or linear
frequency. Values are true
(use normalized frequency), or
false (use linear frequency).
When you specify false, you
must supply the sampling
frequency Fs.

Fs normalized Specifies the sampling
frequency when
NormalizedFrequency is
false. No default value. You
must set NormalizedFrequency
to false before setting a value
for Fs.

SpectrumRange half Specifies whether to use the
whole spectrum or half. half
is the default, and the valid
values are half and whole.

CenterDC false Specifies whether to set the
center of the spectrum to the
DC value in the output plot.
If you select true, both the
negative and positive values
appear in the plot. If you select
false DC appears at the origin
of the axes.

2-841

freqrespest

freqrespest(hd,L,opts) uses an object opts to specify the optional
input parameters instead of directly specifying PV pairs as input
arguments. Create opts with

opts = freqrespopts(hd);

Because opts is an object, you use set to change the parameter values
in opts before you use it with freqrespest. For example, you could
specify a new sample rate with

set(opts,'fs',48e3); % Same as opts.fs=48e3

freqrespest can also compute the frequency response of
double-precision floating filters that cannot be converted to
transfer-function form without introducing significant round off errors
which affect the freqz frequency response computation. Examples of
these kinds of filters include state-space or lattice filters, in particular
high-order filters.

Examples These examples demonstrate some uses for freqrespest.

Example 1

Start by estimating the frequency response of a fixed-point FIR filter
that has filter internals set to full precision.

hd = design(fdesign.lowpass(.4,.5,1,60),'equiripple');

hd.arithmetic = 'fixed';

[h,w] = freqrespest(hd); % This should be about the same as freqz.

Continuing with filter hd, change the value of the filterinternals
property to specifyprecision and then specify the word lengths and
precision (the fraction lengths) applied to the output from internal
addition and multiplication operations. After you set the word and
fraction lengths, use freqrespest to compute the frequency response
estimate for the fixed-point filter.

hd.filterinternals = 'specifyprecision';
hd.outputwordlength=16;

2-842

freqrespest

hd.outputfraclength=15;
hd.productwordlength=16;
hd.productfraclength=15;
hd.accumwordlength=16;
hd.accumfraclength=15;
[h,w] = freqrespest(hd,2);
[h2,w2] = freqz(hd,512);
plot(w/pi,20*log10(abs([h,h2])))
legend('Frequency response estimated by filtering',...
'Freq. response computed by quantizing coefficients only');
xlabel('Normalized Frequency (\times\pi rad/sample)')
ylabel('Magnitude (dB)')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Frequency response estimated by filtering
Frequency response computed by quantizing coefficients only

Example 2

2-843

freqrespest

freqrespest works with state-space filters as well. This example
estimates the frequency response of a state-space filter.

fs = 315000;
wp = [320 3800]/(fs/2);
ws = [50 19000]/(fs/2);
rp=0.15; rs=60;
[n,wn]=cheb1ord(wp,ws,rp,rs);
[a,b,c,d] = cheby1(n,rp,wn);
hd = dfilt.statespace(a,b,c,d);
% Compare the following to freqz(hd,8192)
freqrespest(hd,1,'nfft',8192);

See Also dfilt, freqrespopts, freqz, limitcycle, noisepsd, scale

2-844

freqrespopts

Purpose freqrespest parameters and values

Syntax opts = freqrespopts(hd)

Description opts = freqrespopts(hd) uses the settings in filter hd to create an
object opts that contains parameters and values for estimating the
filter frequency response. You pass opts as an input argument to
freqrespest to specify values for the input parameters.

With freqrespopts you can use the same settings for freqrespest
with multiple filters without having to specify all of the parameters as
input arguments to freqrespest.

Examples This example shows freqrespopts in use for setting options for
freqrespest. hd and hd2 are bandpass filters that use different design
methods. The opts object makes it easier to set the same conditions for
the frequency response estimate in freqrespest.

d=fdesign.bandpass('fst1,fp1,fp2,fst2,ast1,ap,ast2',...
0.25,0.3,0.45,0.5,60,0.1,60);

hd=design(d,'butter');
hd.arithmetic='fixed';
hd2=design(d,'cheby2')
hd2.arithmetic='fixed';
opts=freqrespopts(hd)

opts =

NFFT: 512
NormalizedFrequency: true

Fs: 'Normalized'
SpectrumRange: 'Half'

CenterDC: false

opts.NFFT=256; % Same as set(opts,'nfft',256).
opts.NormalizedFrequency=false;

2-845

freqrespopts

opts.fs=1.5e3;
opts.CenterDC=true

opts =

NFFT: 256
NormalizedFrequency: false

Fs: 1500
SpectrumRange: 'Whole'

CenterDC: true

With opts configured as needed, use it as an input argument for
freqrespest.

[h2,w2]=freqrespest(hd2,20,opts);
[h1,w1]=freqrespest(hd,20,opts);

See Also freqrespest, noisepsd, noisepsdopts, norm, scale

2-846

freqsamp

Purpose Real or complex frequency-sampled FIR filter from specification object

Syntax hd = design(d,'freqsamp')
hd = design(...,'filterstructure',structure)
hd = design(...,'window',window)

Description hd = design(d,'freqsamp') designs a frequency-sampled filter
specified by the fspecifications object h.

hd = design(...,'filterstructure',structure) returns a filter with
the filter structure you specify by the structure input argument.
structure is dffir by default and can be any one of the following filter
structures.

Structure String Description of Resulting Filter Structure

dffir Direct-form FIR filter

dffirt Transposed direct-form FIR filter

dfsymfir Symmetrical direct-form FIR filter

dfasymfir Asymmetrical direct-form FIR filter

fftfir Fast Fourier transform FIR filter

hd = design(...,'window',window) designs filters using the window
specified by the string in window. Provide the input argument window as

• A string for the window type. For example, use bartlett or chebwin,
or hamming. Click window for the full list of windows available or
refer to window in the Signal Processing Toolbox User’s Guide.

• A function handle that references the window function. When the
window function requires more than one input, use a cell array to
hold the required arguments. The final example shows a cell array
input argument.

• The window vector itself.

2-847

freqsamp

Examples These examples design FIR filters that have arbitrary magnitude
responses. In the first filter, the response has three distinct sections and
the resulting filter is real.

The second example creates a complex filter.

b1 = 0:0.01:0.18;b2 = [.2 .38 .4 .55 .562 .585 .6

.78];b3 = [0.79:0.01:1];

a1 = .5+sin(2*pi*7.5*b1)/4; % Sinusoidal response section.

a2 = [.5 2.3 1 1 -.2 -.2 1 1]; % Piecewise linear response section.

a3 = .2+18*(1-b3).^2; % Quadratic response section.

f = [b1 b2 b3];

a = [a1 a2 a3];

n = 300;

d = fdesign.arbmag('n,f,a',n,f,a); % First specifications object.

hd = design(d,'freqsamp','window',{@kaiser,.5}); % Filter.

fvtool(hd)

The plot from FVTool shows the response for hd.

2-848

freqsamp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−10

−5

0

5

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Now design the arbitrary-magnitude complex FIR filter. Recall that
vector f contains frequency locations and vector a contains the desired
filter response values at the locations specified in f.

f = [-1 -.93443 -.86885 -.80328 -.7377 -.67213 -.60656 -.54098 ...

-.47541,-.40984 -.34426 -.27869 -.21311 -.14754 -.081967 ...

-.016393 .04918 .11475,.18033 .2459 .31148 .37705 .44262 ...

.5082 .57377 .63934 .70492 .77049,.83607 .90164 1];

a = [.0095848 .021972 .047249 .099869 .23119 .57569 .94032 ...

.98084 .99707,.99565 .9958 .99899 .99402 .99978 .99995 .99733 ...

.99731 .96979 .94936,.8196 .28502 .065469 .0044517 .018164 ...

.023305 .02397 .023141 .021341,.019364 .017379 .016061];

n = 48;

d = fdesign.arbmag('n,f,a',n,f,a); % Second spec. object.

hdc = design(d,'freqsamp','window','rectwin'); % Filter.

fvtool(hdc)

2-849

freqsamp

FVTool shows you the response for hdc from -1 to 1 in normalized
frequency. design(d,...) returns a complex filter for hdc because the
frequency vector includes negative frequency values.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−35

−30

−25

−20

−15

−10

−5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

See Also design, designmethods, fdesign.arbmag, help

window in the Signal Processing Toolbox documentation

2-850

freqz

Purpose Frequency response of filter

Syntax [h,w] = freqz(ha)
[h,w] = freqz(ha,n)
freqz(ha)
[h,w] = freqz(hd)
[h,w] = freqz(hd,n)
freqz(hd)
[h,w] = freqz(hm)
[h,w] = freqz(hd,n)
freqz(hd)

Description The next sections describe common freqz operation with adaptive,
discrete-time, and multirate filters. For more input options, refer to
freqz in Signal Processing Toolbox.

Adaptive Filters

For adaptive filters, freqz returns the instantaneous frequency
response based on the current filter coefficients.

[h,w] = freqz(ha) returns the frequency response vector h and the
corresponding frequency vector w for the adaptive filter ha. When ha is
a vector of adaptive filters, freqz returns the matrix h. Each column
of h corresponds to one filter in the vector ha.

[h,w] = freqz(ha,n) returns the frequency response vector h and the
corresponding frequency vector w for the adaptive filter ha. freqz uses
the transfer function associated with the adaptive filter to calculate the
frequency response of the filter with the current coefficient values. The
vectors h and w are both of length n. The frequency vector w has values
ranging from 0 to π radians per sample. If you do not specify the integer
n, or you specify it as the empty vector [], the frequency response is
calculated using the default value of 8192 samples for the FFT.

freqz(ha) uses FVTool to plot the magnitude and unwrapped phase
of the frequency response of the adaptive filter ha. If ha is a vector of
filters, freqz plots the magnitude response and phase for each filter in
the vector.

2-851

freqz

Discrete-Time Filters

[h,w] = freqz(hd) returns the frequency response vector h and the
corresponding frequency vector w for the discrete-time filter hd. When
hd is a vector of discrete-time filters, freqz returns the matrix h. Each
column of h corresponds to one filter in the vector hd.

[h,w] = freqz(hd,n) returns the frequency response vector h and the
corresponding frequency vector w for the discrete-time filter hd. freqz
uses the transfer function associated with the discrete-time filter to
calculate the frequency response of the filter with the current coefficient
values. The vectors h and w are both of length n. The frequency vector w
has values ranging from 0 to π radians per sample. If you do not specify
the integer n, or you specify it as the empty vector [], the frequency
response is calculated using the default value of 8192 samples for the
FFT.

freqz(hd) uses FVTool to plot the magnitude and unwrapped phase
of the frequency response of the adaptive filter hd. If hd is a vector of
filters, freqz plots the magnitude response and phase for each filter in
the vector.

Multirate Filters

[h,w] = freqz(hm) returns the frequency response vector h and the
corresponding frequency vector w for the multirate filter hd. When hd is
a vector of multirate filters, freqz returns the matrix h. Each column
of h corresponds to one filter in the vector hd.

[h,w] = freqz(hd,n) returns the frequency response vector h and the
corresponding frequency vector w for the multirate filter hd. freqz uses
the transfer function associated with the multirate filter to calculate
the frequency response of the filter with the current coefficient values.
The vectors h and w are both of length n. The frequency vector w has
values ranging from 0 to π radians per sample. If you do not specify
the integer n, or you specify it as the empty vector [], the frequency
response is calculated using the default value of 8192 samples for the
FFT.

2-852

freqz

freqz(hd) uses FVTool to plot the magnitude and unwrapped phase
of the frequency response of the adaptive filter hd. If hd is a vector of
filters, freqz plots the magnitude response and phase for each filter in
the vector.

Remarks There are several ways of analyzing the frequency response of filters.
freqz accounts for quantization effects in the filter coefficients, but
does not account for quantization effects in filtering arithmetic. To
account for the quantization effects in filtering arithmetic, refer to
function noisepsd.

Algorithm freqz calculates the frequency response for a filter from the filter
transfer function Hq(z). The complex-valued frequency response is
calculated by evaluating Hq(ejω) at discrete values of w specified by the
syntax you use. The integer input argument n determines the number of
equally-spaced points around the upper half of the unit circle at which
freqz evaluates the frequency response. The frequency ranges from 0
to π radians per sample when you do not supply a sampling frequency as
an input argument. When you supply the scalar sampling frequency fs
as an input argument to freqz, the frequency ranges from 0 to fs/2 Hz.

Examples Plot the estimated frequency response of a filter. This example uses
discrete-time filters, but any adaptfilt, dfilt, or mfilt object would
work. First plot the results for one filter.

b = fir1(80,0.5,kaiser(81,8));
hd = dfilt.dffir(b);
freqz(hd);

2-853

freqz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−180

−140

−100

−60

−20

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

−4500

−3600

−2700

−1800

−900

0

P
ha

se
 (

de
gr

ee
s)

Filter #1: Magnitude

Filter #1: Phase

If you have more than one filter, you can plot them on the same figure
using a vector of filters.

b = fir1(40,0.5,kaiser(41,6));
hd2 = dfilt.dffir(b);
h = [hd hd2];
freqz(h);

2-854

freqz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−180

−140

−100

−60

−20

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

−4500

−3600

−2700

−1800

−900

0

P
ha

se
 (

de
gr

ee
s)

hd: Magnitude

hd2: Magnitude

hd: Phase

hd2: Phase

See Also adaptfilt, dfilt, mfilt

fvtool in Signal Processing Toolbox documentation

2-855

gain

Purpose CIC filter gain

Syntax gain(hm)
gain(hm,j)

Description gain(hm) returns the gain of hm, the CIC decimation or interpolation
filter.

When hm is a decimator, gain returns the gain for the overall CIC
decimator.

When hm is an interpolator, the CIC interpolator inserts zeros into the
input data stream, reducing the filter overall gain by 1/R, where R is
the interpolation factor, to account for the added zero valued samples.

Therefore, the gain of a CIC interpolator is , where N is the
number of filter sections and M is the filter differential delay. gain(hm)
returns this value. The example below presents this case.

gain(hm,j) returns the gain of the jth section of a CIC interpolation
filter. When you omit j, gain assumes that j is 2*N, where N is the
number of sections, and returns the gain of the last section of the filter.
This syntax does not apply when hm is a decimator.

Examples To compare the performance of two interpolators, one a CIC filter
and the other an FIR filter, use gain to adjust the CIC filter output
amplitude to match the FIR filter output amplitude. Start by creating
an input data set — a sinusoidal signal x.

fs = 1000; % Input sampling frequency.
t = 0:1/fs:1.5; % Signal length = 1501 samples.
x = sin(2*pi*10*t); % Amplitude = 1 sinusoid.

l = 4; % Interpolation factor for FIR filter.
d = fdesign.interpolator(l);
hm = design(d,'multistage');
ym = filter(hm,x);

r = 4; % Interpolation factor for the CIC filter.

2-856

gain

d = fdesign.interpolator(r,'cic');
hcic = design(d,'multisection');
ycic = filter(hcic,x);
gaincic = gain(hcic);
subplot(211);
plot(1:length(ym),[ym; double(ycic)]);
subplot(212)
plot(1:length(ym),[ym; double(ycic)/gain(hcic)]);

After correcting for the gain induced by the CIC interpolator, the figure
below shows the filters provide nearly identical interpolation.

0 1000 2000 3000 4000 5000 6000
−60

−40

−20

0

20

40

60

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

FIR Interpolator
CIC Interpolator with Gain Correction

FIR Interpolator
CIC Interpolator Without Gain Correction

See Also scale

2-857

grpdelay

Purpose Filter group delay

Syntax [gd,w] = grpdelay(ha)
[gd,w] = grpdelay(ha,n)
grpdelay(ha)
[gd,w] = grpdelay(hd)
[gd,w] = grpdelay(hd,n)
grpdelay(hd)
[gd,w] = grpdelay(hm)
[gd,w] = grpdelay(hm,n)
grpdelay(hm)

Description The next sections describe common grpdelay operation with adaptive,
discrete-time, and multirate filters. For more input options, refer to
grpdelay in Signal Processing Toolbox.

Adaptive Filters

For adaptive filters, grpdelay returns the instantaneous group delay
based on the current filter coefficients.

[gd,w] = grpdelay(ha) returns the group delay vector gd and the
corresponding frequency vector w for the adaptive filter ha. When ha
is a vector of adaptive filters, grpdelay returns the matrix gd. Each
column of gd corresponds to one filter in the vector ha. If you provide a
row vector of frequency points f as an input argument, each row of gd
corresponds to one filter in the vector.

Function grpdelay uses the transfer function associated with the
adaptive filter to calculate the group delay of the filter with the current
coefficient values. The vectors gd and w are both of length n. The
frequency vector w has values ranging from 0 to π radians per sample.
If you do not specify the integer n, or you specify it as the empty vector
[], the frequency response is calculated using the default value of 8192
samples for the FFT.

[gd,w] = grpdelay(ha,n) returns length n vectors vector gd
containing the current group delay for the adaptive filter ha and the

2-858

grpdelay

vector w which contains the frequencies in radians at which grpdelay
calculated the delay. Group delay is

The frequency response is evaluated at n points equally spaced around
the upper half of the unit circle. For FIR filters where n is a power
of two, the computation is done faster using FFTs. When you do not
specify n, it defaults to 8192.

grpdelay(ha) uses FVTool to plot the group delay of the adaptive filter
ha. If ha is a vector of filters, grpdelay plots the magnitude response
and phase for each filter in the vector.

Discrete-Time Filters

[gd,w] = grpdelay(hd) returns the group delay vector gd and the
corresponding frequency vector w for the discrete-time filter hd. When
hd is a vector of discrete-time filters, grpdelay returns the matrix gd.
Each column of gd corresponds to one filter in the vector hd. If you
provide a row vector of frequency points f as an input argument, each
row of gd corresponds to each filter in the vector.

Function grpdelay uses the transfer function associated with the
discrete-time filter to calculate the group delay of the filter. The vectors
gd and w are both of length n. The frequency vector w has values
ranging from 0 to π radians per sample. If you do not specify the integer
n, or you specify it as the empty vector [], the frequency response is
calculated using the default value of 8192 samples for the FFT.

[gd,w] = grpdelay(hd,n) returns length n vectors vector gd
containing the current group delay for the discrete-time filter hd and the
vector w which contains the frequencies in radians at which grpdelay
calculated the delay. Group delay is

The frequency response is evaluated at n points equally spaced around
the upper half of the unit circle. For FIR filters where n is a power

2-859

grpdelay

of two, the computation is done faster using FFTs. When you do not
specify n, it defaults to 8192.

grpdelay(hd) uses FVTool to plot the group delay of the discrete-time
filter hd. If hd is a vector of filters, grpdelay plots the magnitude
response and phase for each filter in the vector.

Multirate Filters

[gd,w] = grpdelay(hm) returns the group delay vector gd and the
corresponding frequency vector w for the multirate filter hm. When hm
is a vector of multirate filters, grpdelay returns the matrix gd. Each
column of gd corresponds to one filter in the vector hm. If you provide a
row vector of frequency points f as an input argument, each row of gd
corresponds to one filter in the vector.

Function grpdelay uses the transfer function associated with the
multirate filter to calculate the group delay of the filter. The vectors gd
and w are both of length n. The frequency vector w has values ranging
from 0 to π radians per sample. If you do not specify the integer n, or you
specify it as the empty vector [], the frequency response is calculated
using the default value of 8192 samples for the FFT.

[gd,w] = grpdelay(hm,n) returns length n vectors vector gd
containing the group delay for the multirate filter hm and the vector w
which contains the frequencies in radians at which grpdelay calculated
the delay. Group delay is

The frequency response is evaluated at n points equally spaced around
the upper half of the unit circle. For FIR filters where n is a power
of two, the computation is done faster using FFTs. When you do not
specify n, it defaults to 8192.

grpdelay(hm) uses FVTool to plot the magnitude and unwrapped phase
of the group delay of the multirate filter hm. If ha is a vector of filters,
grpdelay plots the group delay for each filter in the vector.

2-860

grpdelay

See Also phasez, zerophase

2-861

help

Purpose Help for design method with filter specification

Syntax help(d,'designmethod')

Description help(d,'designmethod') displays help in the Command Window for
the design algorithm designmethod for the current specifications of the
filter specification object d. The string you enter for designmethod must
be one of the strings returned by designmethods for d, the design object.

Examples Get specific help for designing lowpass Butterworth filters. The first
lowpass filter uses the default specification string ’Fp,Fst,Ap,Ast' and
returns help text specific to the specification string.

d = fdesign.lowpass;

designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter

cheby1

cheby2

ellip

equiripple

ifir

kaiserwin

multistage

help(d,'butter')

DESIGN Design a Butterworth IIR filter.

HD = DESIGN(D, 'butter') designs a Butterworth filter specified

by the FDESIGN object D.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter

with the structure STRUCTURE. STRUCTURE is 'df2sos' by default

and can be any of the following.

2-862

help

'df1sos'

'df2sos'

'df1tsos'

'df2tsos'

HD = DESIGN(..., 'MatchExactly', MATCH) designs a Butterworth

filter and matches the frequency and magnitude specification for

the band MATCH exactly. The other band will exceed the

specification. MATCH can be 'stopband' or 'passband' and is

'stopband' by default.

% Example #1 - Compare passband and stopband MatchExactly.

h = fdesign.lowpass('Fp,Fst,Ap,Ast', .1, .3, 1, 60);

Hd = design(h, 'butter', 'MatchExactly', 'passband');

Hd(2) = design(h, 'butter', 'MatchExactly', 'stopband');

% Compare the passband edges in FVTool.

fvtool(Hd);

axis([.09 .11 -2 0]);

Note the discussion of the MatchExactly input option. When you use a
design object that uses a different specification string, such as ’N,F3dB’,
the help content for the butter design method changes.

In this case, the MatchExactly option does not appear in the help
because it is not an available input argument for the specification string
’N,F3dB'.

d=fdesign.lowpass('N,F3dB')

d =
Response: 'Lowpass'

Specification: 'N,F3dB'
Description: {'Filter Order';'3dB Frequency'}

NormalizedFrequency: true
FilterOrder: 10

F3dB: 0.5

2-863

help

designmethods(d)

Design Methods for class fdesign.lowpass (N,F3dB):

butter

help(d,'butter

DESIGN Design a Butterworth IIR filter.

HD = DESIGN(D, 'butter') designs a Butterworth filter
specified by the FDESIGN object D.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a
filter with the structure STRUCTURE. STRUCTURE is 'df2sos'
by default and can be any of the following.

'df1sos'

'df2sos'

'df1tsos'

'df2tsos'

% Example #1 - Design a lowpass Butterworth filter in the
DF2TSOS structure.

h = fdesign.lowpass('N,F3dB');

Hd = design(h, 'butter', 'FilterStructure', 'df2tsos');

See Also fdesign, design, designmethods, designopts

2-864

ifir

Purpose Interpolated FIR filter from filter specification

Syntax hd = ifir(d)
hd = design(d,'ifir',designoption,value,designoption,...
value,...)

Description hd = ifir(d) designs an FIR filter from design object d, using the
interpolated FIR method. ifir returns hd as a cascade of two filters
that act together to meet the specifications in d. The resulting filter is
particularly efficient, having a low number of multipliers. However, if
ifir determines that a single-stage filter would be more efficient than
the default two-stage design, it returns hd as a single-stage filter. ifir
only creates linear phase filters. Generally, ifir uses an advanced
optimization algorithm to create highly efficient FIR filters.

ifir returns hd as either a single-rate dfilt object or a multirate
mfilt object (when you have Filter Design Toolbox installed), based on
the specifications you provide in d, the filter specification object.

specifications supplied in the object h.

hd = design(d,'ifir',designoption,value,designoption,...
value,...) returns an interpolated FIR filter where you specify design
options as input arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as
shown.

designopts(d,'method')

For complete help about using ifir, refer to the command line help
system. For example, to get specific information about using ifir with
d, the specification object, enter the following at the MATLAB prompt.

help(d,'ifir')

2-865

ifir

Note For help about how you use ifir to design filters without using
design objects, enter

help ifir

at the MATLAB prompt.

Examples Use fdesign.lowpass and fdesign.highpass to design a lowpass filter
and a wideband highpass filter. After designing the filters, use FVTool
to plot the response curves for both.

fpass = 0.2;
fstop = 0.24;
d1 = fdesign.lowpass(fpass, fstop);
hd1 = design(d1,'ifir');
fstop = 0.2;
fpass = 0.25;
astop = 40;
apass = 1;
d2 = fdesign.highpass(fstop,fpass,astop,apass);
hd2 = design(d2,'ifir');

Here are the magnitude response curves for both filters.

fvtool(hd1,hd2)

2-866

ifir

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Lowpass Filter

Wideband Highpass Filter

See Also fdesign, firgr

fir1, firls, firpm in Signal Processing Toolbox documentation

2-867

iirbpc2bpc

Purpose Transform IIR complex bandpass filter to IIR complex bandpass filter
with different characteristics

Syntax [Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt)
returns the numerator and denominator vectors, Num and Den
respectively, of the target filter transformed from the complex bandpass
prototype by applying a first-order complex bandpass to complex
bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass
filter is given with the numerator specified by B and the denominator
specified by A.

This transformation effectively places two features of an original
filter, located at frequencies Wo1 and Wo2, at the required target
frequency locations, Wt1, and Wt2 respectively. It is assumed that Wt2
is greater than Wt1. In most of the cases the features selected for the
transformation are the band edges of the filter passbands. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the
deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

This transformation can also be used for transforming other types of
filters; e.g., complex notch filters or resonators can be repositioned at
two distinct desired frequencies at any place around the unit circle;
e.g., in the adaptive system.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

2-868

iirbpc2bpc

Create a complex passband from 0.25 to 0.75:

[b, a] = iirlp2bpc (b, a, 0.5, [0.25,0.75]);
[num, den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.5]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Using FVTool to plot the filters shows you the comparison, presented in
this figure.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Target

2-869

iirbpc2bpc

Arguments Variable Description

B Numerator of the prototype lowpass filter

A Denominator of the prototype lowpass filter

Wo Frequency values to be transformed from the
prototype filter

Wt Desired frequency locations in the transformed
target filter

Num Numerator of the target filter

Den Denominator of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1
corresponding to half the sample rate.

See Also iirftransf, allpassbpc2bpc, zpkbpc2bpc

2-870

iircomb

Purpose IIR comb notch or peak filter

Syntax [num,den] = iircomb(n,bw)
[num,den] = iircomb(n,bw,ab)
[num,den] = iircomb(...,'type')

Description [num,den] = iircomb(n,bw) returns a digital notching filter with
order n and with the width of the filter notch at -3 dB set to bw, the filter
bandwidth. The filter order must be a positive integer. n also defines
the number of notches in the filter across the frequency range from 0 to
2π — the number of notches equals n+1.

For the notching filter, the transfer function takes the form

where a and b are the filter coefficients and n is the filter order or the
number of notches in the filter minus 1.

The quality factor (Q factor) q for the filter is related to the filter
bandwidth by q = ω0/bw where ω0 is the frequency to remove from the
signal.

[num,den] = iircomb(n,bw,ab) returns a digital notching filter
whose bandwidth, bw, is specified at a level of -ab decibels. Including
the optional input argument ab lets you specify the magnitude response
bandwidth at a level that is not the default -3 dB point, such as -6 dB
or 0 dB.

[num,den] = iircomb(...,'type') returns a digital filter of the
specified type. The input argument type can be either

• 'notch' to design an IIR notch filter. Notch filters attenuate the
response at the specified frequencies. This is the default type. When
you omit the type input argument, iircomb returns a notch filter.

• 'peak' to design an IIR peaking filter. Peaking filters boost the
signal at the specified frequencies.

2-871

iircomb

The transfer function for peaking filters is

Examples Design and plot an IIR notch filter with 11 notches (equal to filter order
plus 1) that removes a 60 Hz tone (f0) from a signal at 600 Hz (fs). For
this example, set the Q factor for the filter to 35 and use it to specify
the filter bandwidth.

fs = 600; fo = 60; q = 35; bw = (fo/(fs/2))/q;
[b,a] = iircomb(fs/fo,bw,'notch'); % Note type flag 'notch'
fvtool(b,a);

Using the Filter Visualization Tool (FVTool) generates the following
plot showing the filter notches. Note the notches are evenly spaced and
one falls at exactly 60 Hz.

2-872

iircomb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

See Also firgr, iirnotch, iirpeak

2-873

iirftransf

Purpose IIR frequency transformation of filter

Syntax [OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen)

Description [OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen)
returns the numerator and denominator vectors, OutNum and OutDen,
of the target filter, which is the result of transforming the prototype
filter specified by the numerator, OrigNum, and denominator, OrigDen,
with the mapping filter given by the numerator, FTFNum, and the
denominator, FTFDen. If the allpass mapping filter is not specified, then
the function returns an original filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[num, den] = iirftransf(b, a, AlpNum, AlpDen);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Here’s the comparison between the filters.

2-874

iirftransf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Target

Arguments Variable Description

OrigNum Numerator of the prototype lowpass filter

OrigDen Denominator of the prototype lowpass filter

FTFNum Numerator of the mapping filter

FTFDen Denominator of the mapping filter

OutNum Numerator of the target filter

OutDen Denominator of the target filter

See Also zpkftransf

2-875

iirgrpdelay

Purpose Optimal IIR filter with prescribed group-delay

Syntax [num,den] = iirgrpdelay(n,f,edges,a)
[num,den] = iirgrpdelay(n,f,edges,a,w)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,

tau)
[num,den,tau] = iirgrpdelay(n,f,edges,a,w)

Description [num,den] = iirgrpdelay(n,f,edges,a) returns an allpass IIR filter
of order n (n must be even) which is the best approximation to the
relative group-delay response described by f and a in the least-pth
sense. f is a vector of frequencies between 0 and 1 and a is specified
in samples. The vector edges specifies the band-edge frequencies for
multi-band designs. iirgrpdelay uses a constrained Newton-type
algorithm. Always check your resulting filter using grpdelay or freqz.

[num,den] = iirgrpdelay(n,f,edges,a,w) uses the weights in w
to weight the error. w has one entry per frequency point and must be
the same length as f and a). Entries in w tell iirgrpdelay how much
emphasis to put on minimizing the error in the vicinity of each specified
frequency point relative to the other points.

f and a must have the same number of elements. f and a can contains
more elements than the vector edges contains. This lets you use f and a
to specify a filter that has any group-delay contour within each band.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius) returns a filter
having a maximum pole radius equal to radius, where 0<radius<1.
radius defaults to 0.999999. Filters whose pole radius you constrain
to be less than 1.0 can better retain transfer function accuracy after
quantization.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p), where p is a
two-element vector [pmin pmax], lets you determine the minimum and
maximum values of p used in the least-pth algorithm. p defaults to [2

2-876

iirgrpdelay

128] which yields filters very similar to the L-infinity, or Chebyshev,
norm. pmin and pmax should be even. If p is the string 'inspect', no
optimization occurs. You might use this feature to inspect the initial
pole/zero placement.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens) specifies
the grid density dens used in the optimization process. The number of
grid points is (dens*(n+1)). The default is 20. dens can be specified as
a single-element cell array. The grid is not equally spaced.

[num,den] =
iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden) allows you to
specify the initial estimate of the denominator coefficients in
vector initden. This can be useful for difficult optimization
problems. The pole-zero editor in Signal Processing Toolbox
can be used for generating initden.

[num,den] =
iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau) allows
the initial estimate of the group delay offset to be specified by the value
of tau, in samples.

[num,den,tau] = iirgrpdelay(n,f,edges,a,w) returns the resulting
group delay offset. In all cases, the resulting filter has a group delay
that approximates [a + tau]. Allpass filters can have only positive
group delay and a non-zero value of tau accounts for any additional
group delay that is needed to meet the shape of the contour specified by
(f,a). The default for tau is max(a).

Hint: If the zeros or poles cluster together, your filter order may be
too low or the pole radius may be too small (overly constrained). Try
increasing n or radius.

For group-delay equalization of an IIR filter, compute a by subtracting
the filter’s group delay from its maximum group delay. For example,

[be,ae] = ellip(4,1,40,0.2);
f = 0:0.001:0.2;
g = grpdelay(be,ae,f,2); % Equalize only the passband.
a = max(g)-g;

2-877

iirgrpdelay

[num,den]=iirgrpdelay(8, f, [0 0.2], a);

See Also freqz, filter, grpdelay, iirlpnorm, iirlpnormc, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc. 1993.

2-878

iirlinphase

Purpose Quasi-linear phase IIR filter from halfband filter specification

Syntax hd = design(d,'iirlinphase')
hd = design(...,'filterstructure',structure)

Description hd = design(d,'iirlinphase') designs a quasi-linear phase filter hd
specified by the filter specification object d.

hd = design(...,'filterstructure',structure) returns a filter
with the structure specified by structure. By default, the filter
structure is df2sos (direct-form II with second-order sections). You
can substitute one of the following strings for structure to specify the
structure of hd.

Structure String Filter Structure

df1sos Direct-form I IIR filter with second-order sections

df2sos Direct-form II IIR filter with second-order
sections

df1tsos Transposed direct-form I IIR filter with
second-order sections

df2tsos Transposed direct-form II IIR filter with
second-order sections

Examples Design a quasi-linear phase, minimum-order halfband IIR filter with
transition width of 0.36 and stopband attenuation of at least 80 dB.

tw = 0.36;
ast = 80;
d = fdesign.halfband('tw,ast',tw,ast); % Transition width,

% stopband attenuation.
hd = design(d,'iirlinphase');

fvtool(hd)

2-879

iirlinphase

Notice the characteristic halfband nature of the ripple in the stopband.
If you measure the resulting filter, you see it meets the specifications.

measure(hd)

ans =

Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.32
3-dB Point : 0.5
6-dB Point : 0.51911
Stopband Edge : 0.68
Passband Ripple : 4.0866e-008 dB
Stopband Atten. : 80.2642 dB
Transition Width : 0.36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−95.842

−75.7409

−55.6399

−35.5388

−15.4377

4.6633

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

−24.2069

−19.135

−14.0631

−8.9911

−3.9192

1.1527

P
ha

se
 (

ra
di

an
s)

Magnitude

Phase

2-880

iirlinphase

See Also fdesign.halfband

2-881

iirlp2bp

Purpose Transform IIR lowpass filter to IIR bandpass filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bp(Hd,Wo,Wt)

where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt) returns
the numerator and denominator vectors, Num and Den respectively, of the
target filter transformed from the real lowpass prototype by applying a
second-order real lowpass to real bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with a numerator specified by B and a denominator specified
by A.

This transformation effectively places one feature of an original filter,
located at frequency -Wo, at the required target frequency location, Wt1,
and the second feature, originally at +Wo, at the new location, Wt2. It is
assumed that Wt2 is greater than Wt1. This transformation implements
the “DC Mobility,” meaning that the Nyquist feature stays at Nyquist,
but the DC feature moves to a location dependent on the selection of Wts.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation
is not restricted only to the cutoff frequency of an original lowpass filter.
In general it is possible to select any feature: the stopband edge, the
DC, the deep minimum in the stopband, or other ones.

Real lowpass to bandpass transformation can also be used for
transforming other types of filters; e.g., real notch filters or resonators
can be doubled and positioned at two distinct desired frequencies.

2-882

iirlp2bp

[G,AllpassNum,AllpassDen] = iirlp2bp(Hd,Wo,Wt) returns
transformed dfilt object G with a real bandpass magnitude response.
The coefficients AllpassNum and AllpassDen represent the allpass
mapping filter for mapping the prototype filter frequency Wo and target
frequencies vector Wt. Note that in this syntax Hd is a dfilt object
with a lowpass magnitude response.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b,a] = ellip(3, 0.1, 30, 0.409);

Create the real bandpass filter by placing the cutoff frequencies of the
prototype filter at the band edge frequencies Wt1=0.25 and Wt2=0.75:

[num,den] = iirlp2bp(b,a,0.5,[0.25,0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b,a,num,den);

You can compare the results in this figure to verify the transformation.

2-883

iirlp2bp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Target

Arguments Variable Description

B Numerator of the prototype lowpass filter

A Denominator of the prototype lowpass filter

Wo Frequency value to be transformed from the prototype
filter

Wt Desired frequency locations in the transformed target
filter

Num Numerator of the target filter

Den Denominator of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

2-884

iirlp2bp

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also iirftransf, allpasslp2bp, zpklp2bp

References Constantinides, A.G., “Spectral transformations for digital filters,”
IEEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems,
Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium
on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,’ IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

2-885

iirlp2bpc

Purpose IIR lowpass to complex bandpass transformation

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt)

where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt)
returns the numerator and denominator vectors, Num and Den
respectively, of the target filter transformed from the real lowpass
prototype by applying a first-order real lowpass to complex bandpass
frequency transformation.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with a numerator specified by B and a denominator specified
by A.

This transformation effectively places one feature of an original filter,
located at frequency -Wo, at the required target frequency location, Wt1,
and the second feature, originally at +Wo, at the new location, Wt2. It is
assumed that Wt2 is greater than Wt1.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation
is not restricted only to the cutoff frequency of an original lowpass filter.
In general it is possible to select any feature; e.g., the stopband edge,
the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming
other types of filters; for example real notch filters or resonators can be
doubled and positioned at two distinct desired frequencies at any place
around the unit circle forming a pair of complex notches/resonators.
This transformation can be used for designing bandpass filters for radio
receivers from the high-quality prototype lowpass filter.

2-886

iirlp2bpc

[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt) returns
transformed dfilt object G with a bandpass magnitude response. The
coefficients AllpassNum and AllpassDen represent the allpass mapping
filter for mapping the prototype filter frequency Wo and the target
frequencies vector Wt. Note that in this syntax Hd is a dfilt object
with a lowpass magnitude response.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Move the cutoffs of the prototype filter to the new locations Wt1=0.25
and Wt2=0.75 creating a complex bandpass filter:

[num, den] = iirlp2bpc(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Plotting the prototype and target filters together in FVTool lets you
compare the filters.

2-887

iirlp2bpc

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Target

Arguments Variable Description

B Numerator of the prototype lowpass filter

A Denominator of the prototype lowpass filter

Wo Frequency value to be transformed from the prototype
filter. It should be normalized to be between 0 and 1, with
1 corresponding to half the sample rate.

Wt Desired frequency locations in the transformed target
filter. They should be normalized to be between -1 and 1,
with 1 corresponding to half the sample rate.

Num Numerator of the target filter

2-888

iirlp2bpc

Variable Description

Den Denominator of the target filter

AllpassNumNumerator of the mapping filter

AllpassDenDenominator of the mapping filter

See Also iirftransf, allpasslp2bpc, zpklp2bpc

2-889

iirlp2bs

Purpose Transform IIR lowpass filter to IIR bandstop filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bs(Hd,Wo,Wt)

where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt) returns
the numerator and denominator vectors, Num and Den respectively, of the
target filter transformed from the real lowpass prototype by applying a
second-order real lowpass to real bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with a numerator specified by B and a denominator specified
by A.

This transformation effectively places one feature of an original filter,
located at frequency -Wo, at the required target frequency location, Wt1,
and the second feature, originally at +Wo, at the new location, Wt2. It is
assumed that Wt2 is greater than Wt1. This transformation implements
the "Nyquist Mobility," which means that the DC feature stays at DC,
but the Nyquist feature moves to a location dependent on the selection
of Wo and Wts.

Relative positions of other features of an original filter change in
the target filter. This means that it is possible to select two features
of an original filter, F1 and F2, with F1 preceding F2. After the
transformation feature F2 will precede F1 in the target filter. However,
the distance between F1 and F2 will not be the same before and after
the transformation.

Choice of the feature subject to the lowpass to bandstop transformation
is not restricted only to the cutoff frequency of an original lowpass filter.
In general it is possible to select any feature; e.g., the stopband edge,
the DC, the deep minimum in the stopband, or other ones.

[G,AllpassNum,AllpassDen] = iirlp2bs(Hd,Wo,Wt) returns
transformed dfilt object G with a bandstop magnitude response. The
coefficients AllpassNum and AllpassDen represent the allpass mapping

2-890

iirlp2bs

filter for mapping the prototype filter frequency Wo and the target
frequencies vector Wt. Note that in this syntax Hd is a dfilt object
with a lowpass magnitude response.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Create the real bandstop filter by placing the cutoff frequencies of the
prototype filter at the band edge frequencies Wt1=0.25 and Wt2=0.75:

[num, den] = iirlp2bs(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Target

2-891

iirlp2bs

With both filters plotted in the figure, you see clearly the results of
the transformation.

Arguments Variable Description

B Numerator of the prototype lowpass filter

A Denominator of the prototype lowpass filter

Wo Frequency value to be transformed from the
prototype filter

Wt Desired frequency locations in the transformed
target filter

Num Numerator of the target filter

Den Denominator of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also iirftransf, allpasslp2bs, zpklp2bs

References Constantinides, A.G., “Spectral transformations for digital filters,”
IEEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems,
Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium
on Circuits and Systems, vol. 2, pp. 784-787, 1992.

2-892

iirlp2bs

Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

2-893

iirlp2bsc

Purpose Transform IIR lowpass filter to IIR complex bandstop filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bsc(Hd,Wo,Wt)

where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt)
returns the numerator and denominator vectors, Num and Den
respectively, of the target filter transformed from the real lowpass
prototype by applying a first-order real lowpass to complex bandstop
frequency transformation.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with a numerator specified by B and the denominator specified
by A.

This transformation effectively places one feature of an original filter,
located at frequency -Wo, at the required target frequency location, Wt1,
and the second feature, originally at +Wo, at the new location, Wt2. It is
assumed that Wt2 is greater than Wt1. Additionally the transformation
swaps passbands with stopbands in the target filter.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation
is not restricted only to the cutoff frequency of an original lowpass filter.
In general it is possible to select any feature; e.g., the stopband edge,
the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming
other types of filters; e.g., real notch filters or resonators can be doubled
and positioned at two distinct desired frequencies at any place around
the unit circle forming a pair of complex notches/resonators. This
transformation can be used for designing bandstop filters for band

2-894

iirlp2bsc

attenuation or frequency equalizers, from the high-quality prototype
lowpass filter.

[G,AllpassNum,AllpassDen] = iirlp2bsc(Hd,Wo,Wt) returns
transformed dfilt object G with a bandstop magnitude response. The
coefficients AllpassNum and AllpassDen represent the allpass mapping
filter for mapping the prototype filter frequency Wo and the target
frequencies vector Wt. Note that in this syntax Hd is a dfilt object
with a lowpass magnitude response.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Move the cutoffs of the prototype filter to the new locations Wt1=0.25
and Wt2=0.75 creating a complex bandstop filter:

[num, den] = iirlp2bsc(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

The last command in the example plots both filters in the same window
so you can compare the results.

2-895

iirlp2bsc

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Target

Arguments Variable Description

B Numerator of the prototype lowpass filter

A Denominator of the prototype lowpass filter

Wo Frequency value to be transformed from the
prototype filter. It should be normalized to be
between 0 and 1, with 1 corresponding to half the
sample rate.

Wt Desired frequency locations in the transformed
target filter. They should be normalized to be
between -1 and 1, with 1 corresponding to half the
sample rate.

2-896

iirlp2bsc

Variable Description

Num Numerator of the target filter

Den Denominator of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

See Also iirftransf, allpasslp2bsc, zpklp2bsc.

2-897

iirlp2hp

Purpose Transform lowpass IIR filter to highpass filter

Syntax [num,den] = iirlp2hp(b,a,wc,wd)
[G,AllpassNum,AllpassDen] = iirlp2hp(Hd,Wo,Wt)

where Hd is a dfilt object

Description [num,den] = iirlp2hp(b,a,wc,wd) with input arguments b and a, the
numerator and denominator coefficients (zeros and poles) for a lowpass
IIR filter, iirlp2bp transforms the magnitude response from lowpass
to highpass. num and den return the coefficients for the transformed
highpass filter. For wc, enter a selected frequency from your lowpass
filter. You use the chosen frequency to define the magnitude response
value you want in the highpass filter. Enter one frequency for the
highpass filter — the value that defines the location of the transformed
point — in wd. Note that all frequencies are normalized between zero
and one. Notice also that the filter order does not change when you
transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets
the magnitude response at the wd values of your bandstop filter to be
the same as the magnitude response of your lowpass filter at wc. Filter
performance between the values in wd is not specified, except that the
stopband retains the ripple nature of your original lowpass filter and
the magnitude response in the stopband is equal to the peak response of
your lowpass filter. To accurately specify the filter magnitude response
across the stopband of your bandpass filter, use a frequency value from
within the stopband of your lowpass filter as wc. Then your bandstop
filter response is the same magnitude and ripple as your lowpass filter
stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter
is what makes this function useful. If you have a lowpass filter whose
characteristics, such as rolloff or passband ripple, particularly meet
your needs, the transformation function lets you create a new filter with
the same characteristic performance features, but in a highpass version.
Without designing the highpass filter from the beginning.

2-898

iirlp2hp

In some cases transforming your filter may cause numerical problems,
resulting in incorrect conversion to the highpass filter. Use fvtool to
verify the response of your converted filter.

[G,AllpassNum,AllpassDen] = iirlp2hp(Hd,Wo,Wt) returns
transformed dfilt object G with a highpass magnitude response. The
coefficients AllpassNum and AllpassDen represent the allpass mapping
filter for mapping the prototype filter frequency Wo and the target
frequencies vector Wt. Note that in this syntax Hd is a dfilt object
with a lowpass magnitude response.

Examples This example transforms an IIR filter from lowpass to high pass by
moving the magnitude response at one frequency in the source filter to
a new location in the transformed filter. To generate a highpass filter
whose passband flattens out at 0.4, select the frequency in the lowpass
filter where the passband starts to rolloff (wc = 0.0175) and move it to
the new location at wd = 0.4.

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0],...
[1 1 1 1 10 10]);
wc = 0.0175;
wd = 0.4;
[num,den] = iirlp2hp(b,a,wc,wd);
fvtool(b,a,num,den);

2-899

iirlp2hp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

 Normalized Frequency: 0.4
 Magnitude (dB): −0.241

 Normalized Frequency: 0.0176
 Magnitude (dB): −0.742

Filter #1: Lowpass filter magnitude
Filter #2: Highpass filter magnitude

In the figure showing the magnitude responses for the two filters, the
transition band for the highpass filter is essentially the mirror image
of the transition for the lowpass filter from 0.0175 to 0.025, stretched
out over a wider frequency range. In the passbands, the filter share
common ripple characteristics and magnitude.

See Also iirlp2bp, iirlp2bs, iirlp2lp, firlp2lp, firlp2hp

References Mitra, Sanjit K., Digital Signal Processing. A Computer-Based
Approach, Second Edition, McGraw-Hill, 2001.

2-900

iirlp2lp

Purpose Transform lowpass IIR filter to different lowpass filter

Syntax [num,den] = iirlp2hp(b,a,wc,wd)
[G,AllpassNum,AllpassDen] = iirlp2lp(Hd,Wo,Wt)

where Hd is a dfilt object

Description [num,den] = iirlp2hp(b,a,wc,wd) with input arguments b and a, the
numerator and denominator coefficients (zeros and poles) for a lowpass
IIR filter, iirlp2bp transforms the magnitude response from lowpass
to highpass. num and den return the coefficients for the transformed
highpass filter. For wc, enter a selected frequency from your lowpass
filter. You use the chosen frequency to define the magnitude response
value you want in the highpass filter. Enter one frequency for the
highpass filter — the value that defines the location of the transformed
point — in wd. Note that all frequencies are normalized between zero
and one. Notice also that the filter order does not change when you
transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets
the magnitude response at the wd values of your bandstop filter to be
the same as the magnitude response of your lowpass filter at wc. Filter
performance between the values in wd is not specified, except that the
stopband retains the ripple nature of your original lowpass filter and
the magnitude response in the stopband is equal to the peak response of
your lowpass filter. To accurately specify the filter magnitude response
across the stopband of your bandpass filter, use a frequency value from
within the stopband of your lowpass filter as wc. Then your bandstop
filter response is the same magnitude and ripple as your lowpass filter
stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter
is what makes this function useful. If you have a lowpass filter whose
characteristics, such as rolloff or passband ripple, particularly meet
your needs, the transformation function lets you create a new filter with
the same characteristic performance features, but in a highpass version.
Without designing the highpass filter from the beginning.

2-901

iirlp2lp

In some cases transforming your filter may cause numerical problems,
resulting in incorrect conversion to the highpass filter. Use fvtool to
verify the response of your converted filter.

[G,AllpassNum,AllpassDen] = iirlp2lp(Hd,Wo,Wt) returns
transformed dfilt object G with a lowpass magnitude response. The
coefficients AllpassNum and AllpassDen represent the allpass mapping
filter for mapping the prototype filter frequency Wo and the target
frequencies vector Wt. Note that in this syntax Hd is a dfilt object
with a lowpass magnitude response.

Examples This example transforms an IIR filter from lowpass to high pass by
moving the magnitude response at one frequency in the source filter to
a new location in the transformed filter. To generate a lowpass filter
whose passband extends out to 0.2, select the frequency in the lowpass
filter where the passband starts to rolloff (wc = 0.0175) and move it to
the new location at wd = 0.2.

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0],...
[1 1 1 1 10 10]);
wc = 0.0175;
wd = 0.2;
[num,den] = iirlp2lp(b,a,wc,wd);
fvtool(b,a,num,den);

Moving the edge of the passband from 0.0175 to 0.2 results in a new
lowpass filter whose peak response in-band is the same as the original
filter: same ripple, same absolute magnitude.

2-902

iirlp2lp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

 Normalized Frequency: 0.199
 Magnitude (dB): −0.0564

 Normalized Frequency: 0.0176
 Magnitude (dB): −0.241

Filter #1: Original lowpass filter magnitude
Filter #2: Transformed filter magnitude

Notice that the rolloff is slightly less steep and the stopband profiles are
the same for both filters; the new filter stopband is a “stretched” version
of the original, as is the passband of the new filter.

See Also iirlp2bp, iirlp2bs, iirlp2hp, firlp2lp, firlp2hp

References Mitra, Sanjit K, Digital Signal Processing. A Computer-Based Approach,
Second Edition, McGraw-Hill, 2001.

2-903

iirlp2mb

Purpose Transform IIR lowpass filter to IIR M-band filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt)
[Num,Den,AllpassNum,AllpassDen]=iirlp2mb(B,A,Wo,Wt,Pass)
[G,AllpassNum,AllpassDen] = iirlp2mb(Hd,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2mb(...,Pass)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt) returns
the numerator and denominator vectors, Num and Den respectively, of the
target filter transformed from the real lowpass prototype by applying
an Mth-order real lowpass to real multiple bandpass frequency mapping.
By default the DC feature is kept at its original location.

[Num,Den,AllpassNum,AllpassDen]=iirlp2mb(B,A,Wo,Wt,Pass)
allows you to specify an additional parameter, Pass, which chooses
between using the “DC Mobility” and the “Nyquist Mobility.” In the
first case the Nyquist feature stays at its original location and the DC
feature is free to move. In the second case the DC feature is kept at an
original frequency and the Nyquist feature is movable.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with a numerator specified by B and a denominator specified
by A.

This transformation effectively places one feature of an original filter,
located at frequency Wo, at the required target frequency locations,
Wt1,...,WtM.

Relative positions of other features of an original filter do not change in
the target filter. It is possible to select two features of an original filter,
F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after
the transformation. However, the distance between F1 and F2 will not
be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted
to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

2-904

iirlp2mb

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can be easily replicated at a
number of required frequency locations. A good application would be
an adaptive tone cancellation circuit reacting to the changing number
and location of tones.

[G,AllpassNum,AllpassDen] = iirlp2mb(Hd,Wo,Wt) returns
transformed dfilt object G with an IIR real M-band filter frequency
response. The coefficients AllpassNum and AllpassDen represent the
allpass mapping filter for mapping the prototype filter frequency Wo and
the target frequencies vector Wt. Note that in this syntax Hd is a dfilt
object with a lowpass magnitude response.

[G,AllpassNum,AllpassDen] = iirlp2mb(...,Pass) returns
transformed dfilt object G with an IIR real M-band filter frequency
response. This syntax allows you to specify an additional parameter,
Pass, which chooses between using the “DC Mobility” and the “Nyquist
Mobility.” In the first case the Nyquist feature stays at its original
location and the DC feature is free to move. In the second case the
DC feature is kept at an original frequency and the Nyquist feature
is allowed to move.

The coefficients AllpassNum and AllpassDen represent the allpass
mapping filter for mapping the prototype filter frequency Wo and the
target frequencies vector Wt. Note that in this syntax Hd is a dfilt
object with a lowpass magnitude response.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Example 1

Create the real multiband filter with two passbands:

[num1, den1] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10);
[num2, den2] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'pass');

2-905

iirlp2mb

The second code snippet uses the pass option to select the Nyquist
mobility option. In this case the resulting filter is the same.

Example 2

Create the real multiband filter with two stopbands:

[num3, den3] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with target filters:

fvtool(b, a, num1, den1, num2, den2, num3, den3);

Combining all of the filters, prototypes and targets, on one figure makes
comparing them straightforward. Passbands for the filters in example 1
appear separately in the figure, although they overlap to a degree that
makes them hard to identify — they have identical coefficients.

2-906

iirlp2mb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Multiple Passband Filter with DC Mobility
Multiple Passband with Nyquist Mobility Option
Multiple Stopband Filter

Arguments Variable Description

B Numerator of the prototype lowpass filter

A Denominator of the prototype lowpass filter

Wo Frequency value to be transformed from the prototype
filter

Wt Desired frequency locations in the transformed target
filter

Pass Choice ('pass'/'stop') of passband/stopband at DC,
'pass' being the default

Num Numerator of the target filter

2-907

iirlp2mb

Variable Description

Den Denominator of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also iirftransf, allpasslp2mb, zpklp2mb

References Franchitti, J.C., “All-pass filter interpolation and frequency
transformation problems,” MSc Thesis, Dept. of Electrical and
Computer Engineering, University of Colorado, 1985.

Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation
and frequency transformation problem,” Proceedings 20th Asilomar
Conference on Signals, Systems and Computers, Pacific Grove,
California, pp. 164-168, November 1986.

Mullis, C.T. and R. A. Roberts, Digital Signal Processing, section 6.7,
Reading, Mass., Addison-Wesley, 1987.

Feyh, G., W.B. Jones and C.T. Mullis, “An extension of the Schur
Algorithm for frequency transformations,” Linear Circuits, Systems
and Signal Processing: Theory and Application, C. J. Byrnes et al Eds,
Amsterdam: Elsevier, 1988.

2-908

iirlp2mbc

Purpose Transform IIR lowpass filter to IIR complex M-band filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wc)
[G,AllpassNum,AllpassDen] = iirlp2mbc(Hd,Wo,Wt)

where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wc)
returns the numerator and denominator vectors, Num and Den
respectively, of the target filter transformed from the real lowpass
prototype by applying an Mth-order real lowpass to complex
multibandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with a numerator specified by B and a denominator specified
by A.

This transformation effectively places one feature of an original filter,
located at frequency Wo, at the required target frequency locations,
Wt1,...,WtM.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted
to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can be easily replicated at a
number of required frequency locations. A good application would be
an adaptive tone cancellation circuit reacting to the changing number
and location of tones.

2-909

iirlp2mbc

[G,AllpassNum,AllpassDen] = iirlp2mbc(Hd,Wo,Wt) returns
transformed dfilt object G with an IIR complex M-band filter frequency
response. The coefficients AllpassNum and AllpassDen represent the
allpass mapping filter for mapping the prototype filter frequency Wo and
the target frequencies vector Wt. Note that in this syntax Hd is a dfilt
object with a lowpass magnitude response.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Now create a complex multiband filter with two passbands:

[num1, den1] = iirlp2mbc(b, a, 0.5, [2 4 6 8]/10);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num1, den1);

2-910

iirlp2mbc

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Lowpass Filter
Target Multiband Filter

You see in the figure that iirlp2mbc replicates the desired feature at
0.5 in the lowpass filter at four locations in the multiband filter.

Arguments Variable Description

B Numerator of the prototype lowpass filter.

A Denominator of the prototype lowpass filter.

Wo Frequency value to be transformed from the prototype
filter. It should be normalized to be between 0 and 1,
with 1 corresponding to half the sample rate.

Wc Desired frequency locations in the transformed target
filter. They should be normalized to be between -1 and
1, with 1 corresponding to half the sample rate.

Num Numerator of the target filter.

2-911

iirlp2mbc

Variable Description

Den Denominator of the target filter.

AllpassNum Numerator of the mapping filter.

AllpassDen Denominator of the mapping filter.

See Also iirftransf, allpasslp2mbc, zpklp2mbc

2-912

iirlp2xc

Purpose Transform IIR lowpass filter to IIR complex N-point filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2xc(Hd,Wo,Wt)

where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt) returns
the numerator and denominator vectors, Num and Den respectively, of the
target filter transformed from the real lowpass prototype by applying an
Nth-order real lowpass to complex multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with a numerator specified by B and a denominator specified
by A.

Parameter N also specifies the number of replicas of the prototype
filter created around the unit circle after the transformation. This
transformation effectively places N features of an original filter, located
at frequencies Wo1,...,WoN, at the required target frequency locations,
Wt1,...,WtM.

Relative positions of other features of an original filter are the same
in the target filter for the Nyquist mobility and are reversed for the
DC mobility. For the Nyquist mobility this means that it is possible to
select two features of an original filter, F1 and F2, with F1 preceding
F2. Feature F1 will still precede F2 after the transformation. However,
the distance between F1 and F2 will not be the same before and after
the transformation. For DC mobility feature F2 will precede F1 after
the transformation.

Choice of the feature subject to this transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible
to select any feature; e.g., a stopband edge, DC, the deep minimum in
the stopband, or other ones. The only condition is that the features
must be selected in such a way that when creating N bands around the
unit circle, there will be no band overlap.

2-913

iirlp2xc

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can be easily replicated at a
number of required frequency locations. A good application would be
an adaptive tone cancellation circuit reacting to the changing number
and location of tones.

[G,AllpassNum,AllpassDen] = iirlp2xc(Hd,Wo,Wt) returns
transformed dfilt object G with an IIR complex N-point filter frequency
response. The coefficients AllpassNum and AllpassDen represent the
allpass mapping filter for mapping the prototype filter frequency Wo and
the target frequencies vector Wt. Note that in this syntax Hd is a dfilt
object with a lowpass magnitude response.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Create the complex bandpass filter from the real lowpass filter:

[num, den] = iirlp2xc(b, a, [-0.5 0.5], [-0.25 0.25]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Reviewing the coefficients and the figure produced by the example
shows that the target filter has complex coefficients and is indeed a
bandpass filter as expected.

2-914

iirlp2xc

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Filter
Target Filter

Arguments Variable Description

B Numerator of the prototype lowpass filter.

A Denominator of the prototype lowpass filter.

Wo Frequency values to be transformed from the prototype
filter. They should be normalized to be between 0 and 1,
with 1 corresponding to half the sample rate.

Wt Desired frequency locations in the transformed target
filter. They should be normalized to be between -1 and 1,
with 1 corresponding to half the sample rate.

Num Numerator of the target filter.

2-915

iirlp2xc

Variable Description

Den Denominator of the target filter.

AllpassNumNumerator of the mapping filter.

AllpassDenDenominator of the mapping filter.

See Also iirftransf, allpasslp2xc, zpklp2xc

2-916

iirlp2xn

Purpose Transform IIR lowpass filter to IIR real N-point filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt)
[Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt,Pass)
[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt),
where Hd is a dfilt object
[G,AllpassNum,AllpassDen] = iirlp2bpc(...,Pass)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt) returns
the numerator and denominator vectors, Num and Den respectively, of the
target filter transformed from the real lowpass prototype by applying
an Nth-order real lowpass to real multipoint frequency transformation,
where N is the number of features being mapped. By default the DC
feature is kept at its original location.

[Num,Den,AllpassNum,AllpassDen]= iirlp2xn(B,A,Wo,Wt,Pass)
allows you to specify an additional parameter, Pass, which chooses
between using the "DC Mobility" and the "Nyquist Mobility." In the
first case the Nyquist feature stays at its original location and the DC
feature is free to move. In the second case the DC feature is kept at an
original frequency and the Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass
filter is given with the numerator specified by B and the denominator
specified by A.

Parameter N also specifies the number of replicas of the prototype
filter created around the unit circle after the transformation. This
transformation effectively places N features of an original filter, located
at frequencies Wo1,...,WoN, at the required target frequency locations,
Wt1,...,WtM.

Relative positions of other features of an original filter are the same
in the target filter for the Nyquist mobility and are reversed for the
DC mobility. For the Nyquist mobility this means that it is possible to
select two features of an original filter, F1 and F2, with F1 preceding
F2. Feature F1 will still precede F2 after the transformation. However,
the distance between F1 and F2 will not be the same before and after

2-917

iirlp2xn

the transformation. For DC mobility feature F2 will precede F1 after
the transformation.

Choice of the feature subject to this transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible
to select any feature; e.g., the stopband edge, the DC, the deep minimum
in the stopband, or other ones. The only condition is that the features
must be selected in such a way that when creating N bands around the
unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can be easily replicated at a
number of required frequency locations. A good application would be
an adaptive tone cancellation circuit reacting to the changing number
and location of tones.

[G,AllpassNum,AllpassDen] = iirlp2xn(Hd,Wo,Wt) returns
transformed dfilt object G with an IIR real N-point filter frequency
response. The coefficients AllpassNum and AllpassDen represent the
allpass mapping filter for mapping the prototype filter frequency Wo and
the target frequencies vector Wt. Note that in this syntax Hd is a dfilt
object with a lowpass magnitude response.

[G,AllpassNum,AllpassDen] = iirlp2xn(...,Pass) returns
transformed dfilt object G with an IIR real N-point filter frequency
response. This syntax allows you to specify an additional parameter,
Pass, which chooses between using the "DC Mobility" and the "Nyquist
Mobility." In the first case the Nyquist feature stays at its original
location and the DC feature is free to move. In the second case the
DC feature is kept at an original frequency and the Nyquist feature
is allowed to move.

The coefficients AllpassNum and AllpassDen represent the allpass
mapping filter for mapping the prototype filter frequency Wo and the
target frequencies vector Wt. Note that in this syntax Hd is a dfilt
object with a lowpass magnitude response.

2-918

iirlp2xn

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Move the cutoffs of the prototype filter to the new locations Wt1=0.25
and Wt2=0.75 creating a real bandpass filter:

[num, den] = iirlp2xn(b, a, [-0.5 0.5], [0.25 0.75], ...
pass');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

iirlp2xn has created the desired bandpass filter with the cutoff
locations specified in the command.

2-919

iirlp2xn

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

Prototype Filter
Target Filter from Shifting Frequency

Arguments Variable Description

B Numerator of the prototype lowpass filter

A Denominator of the prototype lowpass filter

Wo Frequency values to be transformed from the
prototype filter

Wt Desired frequency locations in the transformed target
filter

Pass Choice ('pass'/'stop') of passband/stopband at DC,
'pass' being the default

Num Numerator of the target filter

2-920

iirlp2xn

Variable Description

Den Denominator of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also iirftransf, allpasslp2xn, zpklp2xn

References Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for
Flexible IIR Filter Design,” VII European Signal Processing Conference
(EUSIPCO’94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom,
September 1994.

Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order
frequency transformations for IIR filters,” 38th Midwest Symposium on
Circuits and Systems (MWSCAS’95), Rio de Janeiro, Brazil, August
1995.

2-921

iirlpnorm

Purpose Least P-norm optimal IIR filter

Syntax [num,den] = iirlpnorm(n,d,f,edges,a)
[num,den] = iirlpnorm(n,d,f,edges,a,w)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden)

Description [num,den] = iirlpnorm(n,d,f,edges,a) returns a filter having
a numerator order n and denominator order d which is the best
approximation to the desired frequency response described by f and
a in the least-pth sense. The vector edges specifies the band-edge
frequencies for multi-band designs. An unconstrained quasi-Newton
algorithm is employed and any poles or zeros that lie outside of the
unit circle are reflected back inside. n and d should be chosen so that
the zeros and poles are used effectively. See the “Hints” on page 2-923
section. Always use freqz to check the resulting filter.

[num,den] = iirlpnorm(n,d,f,edges,a,w) uses the weights in w
to weight the error. w has one entry per frequency point (the same
length as f and a) which tells iirlpnorm how much emphasis to put on
minimizing the error in the vicinity of each frequency point relative
to the other points. f and a must have the same number of elements,
which may exceed the number of elements in edges. This allows for
the specification of filters having any gain contour within each band.
The frequencies specified in edges must also appear in the vector f.
For example,

[num,den] = iirlpnorm(5,12,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

is a lowpass filter with a peak of 1.6 within the passband.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p) where p is a
two-element vector [pmin pmax] allows for the specification of the
minimum and maximum values of p used in the least-pth algorithm.
Default is [2 128] which essentially yields the L-infinity, or Chebyshev,
norm. Pmin and pmax should be even. If p is the string 'inspect', no

2-922

iirlpnorm

optimization will occur. This can be used to inspect the initial pole/zero
placement.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens) specifies the
grid density dens used in the optimization. The number of grid points
is (dens*(n+d+1)). The default is 20. dens can be specified as a
single-element cell array. The grid is not equally spaced.

[num,den] =
iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden) allows for
the specification of the initial estimate of the filter numerator and
denominator coefficients in vectors initnum and initden. This may be
useful for difficult optimization problems. The pole-zero editor in Signal
Processing Toolbox can be used for generating initnum and initden.

Hints • This is a weighted least-pth optimization.

• Check the radii and locations of the poles and zeros for your filter.
If the zeros are on the unit circle and the poles are well inside the
unit circle, try increasing the order of the numerator or reducing the
error weighting in the stopband.

• Similarly, if several poles have a large radii and the zeros are well
inside of the unit circle, try increasing the order of the denominator
or reducing the error weighting in the passband.

See Also iirlpnormc, filter, freqz, iirgrpdelay, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc. 1993.

2-923

iirlpnormc

Purpose Constrained least Pth-norm optimal IIR filter

Syntax [num,den] = iirlpnormc(n,d,f,edges,a)
[num,den] = iirlpnormc(n,d,f,edges,a,w)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens,...
initnum,initden)
[num,den,err] = iirlpnormc(...)
[num,den,err,sos,g] = iirlpnormc(...)

Description [num,den] = iirlpnormc(n,d,f,edges,a) returns a filter having
numerator order n and denominator order d which is the best
approximation to the desired frequency response described by f and
a in the least-pth sense. The vector edges specifies the band-edge
frequencies for multi-band designs. A constrained Newton-type
algorithm is employed. n and d should be chosen so that the zeros
and poles are used effectively. See the Hints section. Always check
the resulting filter using fvtool.

[num,den] = iirlpnormc(n,d,f,edges,a,w) uses the weights in w
to weight the error. w has one entry per frequency point (the same
length as f and a) which tells iirlpnormc how much emphasis to put
on minimizing the error in the vicinity of each frequency point relative
to the other points. f and a must have the same number of elements,
which can exceed the number of elements in edges. This allows for
the specification of filters having any gain contour within each band.
The frequencies specified in edges must also appear in the vector f.
For example,

[num,den] = iirlpnormc(5,5,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

designs a lowpass filter with a peak of 1.6 within the passband.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius) returns a filter
having a maximum pole radius of radius where 0<radius<1. radius

2-924

iirlpnormc

defaults to 0.999999. Filters that have a reduced pole radius may retain
better transfer function accuracy after you quantize them.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p) where p is
a two-element vector [pmin pmax] allows for the specification of the
minimum and maximum values of p used in the least-pth algorithm.
Default is [2 128] which essentially yields the L-infinity, or Chebyshev,
norm. pmin and pmax should be even. If p is the string 'inspect', no
optimization will occur. This can be used to inspect the initial pole/zero
placement.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens) specifies
the grid density dens used in the optimization. The number of grid
points is (dens*(n+d+1)). The default is 20. dens can be specified as a
single-element cell array. The grid is not equally spaced.

[num,den] =
iirlpnormc(n,d,f,edges,a,w,radius,p,dens,...initnum,initden)
allows for the specification of the initial estimate of the filter numerator
and denominator coefficients in vectors initnum and initden.
This may be useful for difficult optimization problems. The
pole-zero editor in Signal Processing Toolbox can be used for
generating initnum and initden.

[num,den,err] = iirlpnormc(...) returns the least-Pth
approximation error err.

[num,den,err,sos,g] = iirlpnormc(...) returns the second-order
section representation in the matrix SOS and gain G. For numerical
reasons you may find SOS and G beneficial in some cases.

Hints • This is a weighted least-pth optimization.

• Check the radii and location of the resulting poles and zeros.

• If the zeros are all on the unit circle and the poles are well inside of
the unit circle, try increasing the order of the numerator or reducing
the error weighting in the stopband.

2-925

iirlpnormc

• Similarly, if several poles have a large radius and the zeros are well
inside of the unit circle, try increasing the order of the denominator
or reducing the error weight in the passband.

• If you reduce the pole radius, you might need to increase the order
of the denominator.

The message

Poorly conditioned matrix. See the "help" file.

indicates that iirlpnormc cannot accurately compute the optimization
because either:

1 The approximation error is extremely small (try reducing the
number of poles or zeros — refer to the hints above).

2 The filter specifications have huge variation, such as a=[1 1e9 0 0].

Examples This example returns a lowpass filter whose pole radius is constrained
to 0.8

[b,a,err,s,g] = iirlpnormc(6,6,[0 .4 .5 1],[0 .4 .5 1],...

[1 1 0 0],[1 1 1 1],.8);

hd = dfilt.df1sos(s,g); % Construct second-order sections filter.

fvtool(hd); % View filter's magnitude response

From the magnitude response shown here you see the lowpass nature
of the filter. The pole/zero plot following shows that the poles are
constrained to 0.8 as specified in the command.

2-926

iirlpnormc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Filter hd

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

2

Real Part

Im
ag

in
ar

y
P

ar
t

Pole/Zero Plot

Filter hd: Zero

Filter hd: Pole

2-927

iirlpnormc

See Also freqz, filter, iirgrpdelay, iirlpnorm, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc. 1993.

2-928

iirls

Purpose RLS IIR filter from specification object

Syntax hd = design(d,'iirls')
hd = design(d,'iirls',designoption,value,designoption,value,

...)

Description hd = design(d,'iirls') designs a least-squares filter specified by the
filter specification object d.

Note The iirls algorithm might not be well behaved in all cases.
Experience is your best guide to determining if the resulting filter meets
your needs. When you use iirls to design a filter, review the filter
carefully to ensure that it is appropriate for your use.

hd =
design(d,'iirls',designoption,value,designoption,value,...)
returns a least-squares IIR filter where you specify design options as
input arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as
shown.

designopts(d,'method')

For complete help about using iirls, refer to the command line help
system. For example, to get specific information about using iirls with
d, the specification object, enter the following at the MATLAB prompt.

help(d,'iirls')

Examples Starting from an arbitrary magnitude and phase design object d,
generate a complex bandpass filter of order = 5. To make the example
a little easier to do, use the default values for F, and H, the frequency
vector and the complex desired frequency response.

2-929

iirls

d = fdesign.arbmagnphase('N,F,H',5);

d =

Response: 'Arbitrary Magnitude and Phase'

Specification: 'N,F,H'

Description: {'Filter Order';'Frequency Vector';'

Complex Desired Frequency Response'

NormalizedFrequency: true

FilterOrder: 5

Frequencies: [1x655 double]

FreqResponse: [1x655 double]

design(d,'iirls'); % Opens FVTool to show the filter.

Displaying both the phase and magnitude response in FVTool shows
you the filter.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−41.7835

−33.0433

−24.303

−15.5628

−6.8225

1.9177

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

−5.3431

−2.5785

0.1861

2.9507

5.7153

8.4799

P
ha

se
 (

ra
di

an
s)

Magnitude

Phase

2-930

iirls

See Also fdesign.arbmag, fdesign.arbmagnphase, firls

2-931

iirnotch

Purpose Second-order IIR notch filter

Syntax [num,den] = iirnotch(w0,bw)
[num,den] = iirnotch(w0,bw,ab)

Description [num,den] = iirnotch(w0,bw) turns a digital notching filter with the
notch located at w0, and with the bandwidth at the -3 dB point set to bw.
To design the filter, w0 must meet the condition 0.0 w0 1.0, where 1.0
corresponds to π adians per sample in the frequency range.

The quality factor (Q factor) q for the filter is related to the filter
bandwidth by q w0/bw where ω0 is w0, the frequency to remove from
the signal.

[num,den] = iirnotch(w0,bw,ab) returns a digital notching filter
whose bandwidth, bw, is specified at a level of -ab decibels. Including
the optional input argument ab lets you specify the magnitude response
bandwidth at a level that is not the default -3 dB point, such as -6 dB
or 0 dB.

Examples Design and plot an IIR notch filter that removes a 60 Hz tone (f0) from
a signal at 300 Hz (fs). For this example, set the Q factor for the filter
to 35 and use it to specify the filter bandwidth:

wo = 60/(300/2); bw = wo/35;
[b,a] = iirnotch(wo,bw);
fvtool(b,a);

Shown in the next plot, the notch filter has the desired bandwidth with
the notch located at 60 Hz, or 0.4π radians per sample. Compare this
plot to the comb filter plot shown on the reference page for iircomb.

2-932

iirnotch

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−25

−20

−15

−10

−5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

See Also firgr, iircomb, iirpeak

2-933

iirpeak

Purpose Second-order IIR peak or resonator filter

Syntax [num,den] = iirpeak(w0,bw)
[num,den] = iirpeak(w0,bw,ab)

Description [num,den] = iirpeak(w0,bw) turns a second-order digital peaking
filter with the peak located at w0, and with the bandwidth at
the +3 dB point set to bw. To design the filter, w0 must meet the
condition 0.0 < w0 < 1.0, where 1.0 corresponds to π radians per sample
in the frequency range.

The quality factor (Q factor) q for the filter is related to the filter
bandwidth by q = w0/bw where ω0 is w0 the signal frequency to boost.

[num,den] = iirpeak(w0,bw,ab) returns a digital peaking filter
whose bandwidth, bw, is specified at a level of +ab decibels. Including
the optional input argument ab lets you specify the magnitude response
bandwidth at a level that is not the default +3 dB point, such as
+6 dB or 0 dB.

Examples Design and plot an IIR peaking filter that boosts the frequency at 1.75
Khz in a signal and has bandwidth of 500 Hz at the -3 dB point:

fs = 10000; wo = 1750/(fs/2); bw = 500/(fs/2);
[b,a] = iirpeak(wo,bw);
fvtool(b,a);

Shown in the next plot, the peak filter has the desired gain and
bandwidth at 1.75 KHz.

2-934

iirpeak

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

See Also firgr, iircomb, iirnotch

2-935

iirpowcomp

Purpose Power complementary IIR filter

Syntax [bp,ap] = iirpowcomp(b,a)
[bp,ap,c] = iirpowcomp(b,a)

Description [bp,ap] = iirpowcomp(b,a) returns the coefficients of the power
complementary IIR filter g(z) = bp(z)/ap(z) in vectors bp and ap, given
the coefficients of the IIR filter h(z) = b(z)/a(z) in vectors b and a. b
must be symmetric (Hermitian) or antisymmetric (antihermitian) and
of the same length as a. The two power complementary filters satisfy
the relation

|H(w)|2 + |G(w)|2 = 1.

[bp,ap,c] = iirpowcomp(b,a) where c is a complex scalar of
magnitude = 1, forces bp to satisfy the generalized hermitian property

conj(bp(end:-1:1)) = c*bp.

When c is omitted, it is chosen as follows:

• When b is real, chooses C as 1 or -1, whichever yields bp real

• When b is complex, C defaults to 1

ap is always equal to a.

Examples [b,a]=cheby1(10,.5,.4);
[bp,ap]=iirpowcomp(b,a);
[h,w,s]=freqz(b,a); [h1,w,s]=freqz(bp,ap);
s.plot='mag'; s.yunits='sq';freqzplot([h h1],w,s)

The next figure presents the results of applying iirpowcomp to the
Chebyshev filter — the power complementary version of the original
filter.

2-936

iirpowcomp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 S

qu
ar

ed

See Also tf2ca, tf2cl, ca2tf, cl2tf

2-937

iirrateup

Purpose Upsample IIR filter by integer factor

Syntax [Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N)

Description [Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N) returns
the numerator and denominator vectors, Num and Den respectively, of
the target filter being transformed from any prototype by applying an
Nth-order rateup frequency transformation, where N is the upsample
ratio. Transformation creates N equal replicas of the prototype filter
frequency response.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with a numerator specified by B and a denominator specified
by A.

The relative positions of other features of an original filter do not change
in the target filter. This means that it is possible to select two features
of an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
[num, den] = iirrateup(b, a, 4);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

As shown in the figure produced by FVTool, the transformed filter
appears as expected.

2-938

iirrateup

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

Arguments Variable Description

B Numerator of the prototype lowpass filter

A Denominator of the prototype lowpass filter

N Frequency multiplication ratio

Num Numerator of the target filter

Den Denominator of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

2-939

iirrateup

See Also iirftransf, allpassrateup, zpkrateup

2-940

iirshift

Purpose Shift frequency response of IIR filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt) returns
the numerator and denominator vectors, Num and Den respectively, of the
target filter transformed from the real lowpass prototype by applying
a second-order real shift frequency mapping.

It also returns the numerator, AllpassNum, and the denominator of the
allpass mapping filter, AllpassDen. The prototype lowpass filter is given
with the numerator specified by B and the denominator specified by A.

This transformation places one selected feature of an original filter
located at frequency Wo to the required target frequency location, Wt.
This transformation implements the "DC Mobility," which means that
the Nyquist feature stays at Nyquist, but the DC feature moves to a
location dependent on the selection of Wo and Wt.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the real shift transformation is not
restricted to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the
deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can change their position in a
simple way without designing them from the beginning.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

2-941

iirshift

Perform the real frequency shift by defining where the selected feature
of the prototype filter, originally at Wo=0.5, should be placed in the
target filter, Wt=0.75:

Wo = 0.5; Wt = 0.75;
[num, den] = iirshift(b, a, Wo, Wt);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Shifting the specified feature from the prototype to the target generates
the response shown in the figure.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

Prototype Filter
Target Filter from Shifting Frequency

2-942

iirshift

Arguments Variable Description

B Numerator of the prototype lowpass filter

A Denominator of the prototype lowpass filter

Wo Frequency value to be transformed from the prototype
filter

Wt Desired frequency location in the transformed target
filter

Num Numerator of the target filter

Den Denominator of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also iirftransf, allpassshift, zpkshift.

2-943

iirshiftc

Purpose Shift frequency response of IIR complex filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wc)
[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,0.5)
[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,-0.5)

Description [Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wc)
returns the numerator and denominator vectors, Num and Den
respectively, of the target filter transformed from the real lowpass
prototype by applying a first-order complex frequency shift
transformation. This transformation rotates all the features of an
original filter by the same amount specified by the location of the
selected feature of the prototype filter, originally at Wo, placed at Wt
in the target filter.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass
filter is given with the numerator specified by B and the denominator
specified by A.

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,0.5)
calculates the allpass filter for doing the Hilbert transformation, i.e. a
90 degree counterclockwise rotation of an original filter in the frequency
domain.

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,-0.5)
calculates the allpass filter for doing an inverse Hilbert transformation,
i.e. a 90 degree clockwise rotation of an original filter in the frequency
domain.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Rotate all features of the prototype filter in the frequency domain by
the same amount by specifying where the selected feature of an original
filter, Wo= 0.5, should appear in the target filter, Wt= 0.25:

2-944

iirshiftc

[num, den] = iirshiftc(b, a, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

After applying the shift, the selected feature from the original filter is
just where it should be, at Wt = 0.25.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

Prototype Filter
Target Filter

Arguments Variable Description

B Numerator of the prototype lowpass filter

A Denominator of the prototype lowpass filter

2-945

iirshiftc

Variable Description

Wo Frequency value to be transformed from the prototype
filter

Wt Desired frequency location in the transformed target
filter

Num Numerator of the target filter

Den Denominator of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1
corresponding to half the sample rate.

See Also iirftransf, allpassshiftc, zpkshiftc

References Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal
Processing, Prentice-Hall International Inc., 1989.

Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert
transformers, and half-band low-pass filters,” IEEE Transactions on
Education, vol. 32, pp. 314-318, August 1989.

2-946

impz

Purpose Filter impulse response

Syntax [h,t] = impz(ha)
[h,t] = impz(...,fs)
impz(ha,...)
[h,t] = impz(hd)
impz(hd)
[h,t] = impz(hm)
impz(hm)

Description The next sections describe common impz operation with adaptive,
discrete-time, and multirate filters. For more input options, refer to
impz in Signal Processing Toolbox.

• “Discrete-Time Filters” on page 2-948

• “Multirate Filters” on page 2-948

Adaptive Filters

For adaptive filters, impz returns the instantaneous impulse response
based on the current filter coefficients.

[h,t] = impz(ha) computes the instantaneous impulse response of
the adaptive filter ha choosing the number of samples for you, and
returns the response in column vector h and a vector of times or sample
intervals in t where (t = [0 1 2...]’).

[h,t] = impz(...,fs) returns a matrix h if ha is a vector. Each
column of the matrix corresponds to one filter in the vector. When ha is
a vector of adaptive filters, impz returns the matrix h. Each column of
h corresponds to one filter in the vector ha. If you provide a sampling
frequency fs as an input argument, impz uses fs in when determining
the impulse response.

impz(ha,...) uses FVTool to plot the impulse response of the adaptive
filter ha. If ha is a vector of filters, impz plots the response and for each
filter in the vector.

2-947

impz

Discrete-Time Filters

[h,t] = impz(hd) computes the instantaneous impulse response of the
discrete-time filter hd choosing the number of samples for you, and
returns the response in column vector h and a vector of times or sample
intervals in t where (t = [0 1 2...]’). impz returns a matrix h if hd is a
vector. Each column of the matrix corresponds to one filter in the vector.
When hd is a vector of discrete-time filters, impz returns the matrix h.
Each column of h corresponds to one filter in the vector hd.

impz(hd) uses FVTool to plot the impulse response of the discrete-time
filter hd. If hd is a vector of filters, impz plots the response and for each
filter in the vector.

Multirate Filters

[h,t] = impz(hm) computes the instantaneous impulse response of
the multirate filter hm choosing the number of samples for you, and
returns the response in column vector h and a vector of times or sample
intervals in t where (t = [0 1 2...]’). [h,t] = impz(hm) returns a matrix
h if hm is a vector. Each column of the matrix corresponds to one filter
in the vector. When hm is a vector of multirate filters, impz returns the
matrix h. Each column of h corresponds to one filter in the vector ha.

impz(hm) uses FVTool to plot the impulse response of the multirate
filter hm. If ha is a vector of filters, impz plots the response and for each
filter in the vector.

Note that the multirate filter impulse response is computed relative
to the rate at which the filter is running. When you specify fs (the
sampling rate) as an input argument, impz assumes the filter is running
at that rate.

For multistage cascades, impz forms a single-stage multirate filter that
is equivalent to the cascade and computes the response relative to the
rate at which the equivalent filter is running. impz does not support all
multistage cascades. Only cascades for which it is possible to derive an
equivalent single-stage filter are allowed for analysis.

As an example, consider a 2-stage interpolator where the first
stage has an interpolation factor of 2 and the second stage has an

2-948

impz

interpolation factor of 4. An equivalent single-stage filter with an
overall interpolation factor of 8 can be found. impz uses the equivalent
filter for the analysis. If a sampling frequency fs is specified as an
input argument to impz, the function interprets fs as the rate at which
the equivalent filter is running.

Note impz works for both real and complex filters. When you omit the
output arguments, impz plots only the real part of the impulse response.

Examples Create a discrete-time filter for a fourth-order, low-pass elliptic filter
with a cutoff frequency of 0.4 times the Nyquist frequency. Use a
second-order sections structure to resist quantization errors. Plot the
first 50 samples of the impulse response, along with the reference
impulse response.

% Create a design object for the prototype filter.

d = fdesign.lowpass(.4,.5,1,80)

d =

Response: 'Minimum-order lowpass'
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

Fs: 'Normalized'
Fpass: 0.4000
Fstop: 0.5000
Apass: 1
Astop: 80

Use ellip to design the discrete-time filter in second-order section
form, with minimum-order.

hd=design(d,'ellip')

2-949

impz

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [4x6 double]

ScaleValues: [5x1 double]
ResetBeforeFiltering: 'on'

States: [2x4 double]

Convert hd to fixed-point and check the impulse response
hd.arithmetic = ’fixed’;

impz(hd)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−160

−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

See Also filter

2-950

info

Purpose Information about filter

Syntax s = info(h)
info(h)
info(h, 'short')
s = info(h, 'long')
info(h, 'long')

Description s = info(h) or info(h) or info(h, 'short') returns very basic
information about the filter. The particulars depend on the filter type
and structure.

s = info(h, 'long') or info(h, 'long') returns the following
information about the filter:

• Specifications such as the filter structure and filter order

• Information about the design method and options

• Performance measurements for the filter response, such as the
passband cutoff or stopband attenuation, included in themeasure
method.

• Cost of implementing the filter in terms of operations required to
apply the filter to data, included in the cost method.

When the filter uses fixed-point arithmetic, the info returns additional
information about the filter, including the arithmetic setting and details
about the filter internals.

Examples In the following example shows how to obtain information about a filter.
Note that the short version of the available information is obtained
by default.

>> d = fdesign.lowpass;
>> f = design(d);
>> info(f, 'short')
Discrete-Time FIR Filter (real)

2-951

info

Filter Structure : Direct-Form FIR
Filter Length : 43
Stable : Yes
Linear Phase : Yes (Type 1)

>> info (f)
Discrete-Time FIR Filter (real)

Filter Structure : Direct-Form FIR
Filter Length : 43
Stable : Yes
Linear Phase : Yes (Type 1)

>> info (f, 'long')
Discrete-Time FIR Filter (real)

Filter Structure : Direct-Form FIR
Filter Length : 43
Stable : Yes
Linear Phase : Yes (Type 1)

Design Method Information
Design Algorithm : equiripple

Design Options
DensityFactor : 16
MinOrder : any
MinPhase : false
StopbandDecay : 0
StopbandShape : flat

Design Specifications
Sampling Frequency : N/A (normalized frequency)
Response : Lowpass
Specification : Fp,Fst,Ap,Ast
Passband Edge : 0.45
Stopband Edge : 0.55

2-952

info

Passband Ripple : 1 dB
Stopband Atten. : 60 dB

Measurements
Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.45
3-dB Point : 0.46956
6-dB Point : 0.48313
Stopband Edge : 0.55
Passband Ripple : 0.8919 dB
Stopband Atten. : 60.9681 dB
Transition Width : 0.1

Implementation Cost
Number of Multipliers : 43
Number of Adders : 42
Number of States : 42
MultPerInputSample : 43
AddPerInputSample : 42

See Also coeffs, isfir, isstable, islinphase

dfilt in Signal Processing Toolbox documentation

2-953

int

Purpose States from CIC filter

Syntax integerstates = int(hm.states)

Description integerstates = int(hm.states) returns the states of a CIC filter in
matrix form, rather than as the native filtstates object. An important
point about int is that it quantizes the state values to the smallest
number of bits possible while maintaining the values accurately.

Examples For many users, the states of multirate filters are most useful as a
matrix, but the CIC filters store the states as objects. Here is how you
get the states from you CIC filter as a matrix.

hm = mfilt.cicdecim;

hs = hm.states; % Returns a FILTSTATES.CIC object hs.

states = int(hs); % Convert object hs to a signed integer matrix.

After using int to convert the states object to a matrix, here is what
you get.

Before converting:

hm.states

ans =

Integrator: [2x1 States]

Comb: [2x1 States]

After the conversion and assigning the states to states:

states

states =

0 0

0 0

2-954

int

See Also filtstates.cic, mfilt.cicdecim, mfilt.cicinterp

2-955

isallpass

Purpose Determine whether filter is allpass

Syntax isallpass(hd)
isallpass(hd,tolerance)

Description isallpass(hd) determines whether the filter object hd is an allpass
filter, returning 1 if true and 0 if false.

isallpass(hd,tolerance) uses input argument tolerance to
determine whether the numerator and denominator transfer functions
for the filter are close enough in value to be considered equal, and thus
allpass, returning 1 if true (the difference between the numbers is less
than tolerance) and 0 if not.

Given an allpass filter with this transfer function

if the numerator and denominator transfer functions are equal, the
filter is allpass. The tolerance input argument lets you determine how
closely the transfer functions have to match to be considered equal.
This might be most helpful in fixed-point allpass filters.

Lattice coupled allpass filters always have allpass sections, this function
always returns 1 for filters whose structure is latticeca.

Examples Use dfilt.allpass to construct an allpass filter and test whether the
filter is allpass.

c=[.8,1.5,0.4, 0.7]; % Allpass coefficients.
hd=dfilt.allpass(c)

hd =

FilterStructure: 'Minimum-Multiplier Allpass'
AllpassCoefficients: [.8,1.5,0.4, 0.7]

2-956

isallpass

PersistentMemory: false
States: [0;0;0;0;0;0;0;0]

NumSamplesProcessed: 0

isallpass(hd)

ans =

1

See Also isfir, islinphase, ismaxphase, isminphase, isreal, issos, isstable

2-957

isfir

Purpose Determine whether filter is FIR

Syntax isfir(h)

Description isfir(h) determines whether filter h is an FIR filter, returning 1when
the filter is an FIR filter, and 0 when it is IIR. isfir applies to dfilt,
mfilt, and adaptfilt objects.

To determine whether h is an FIR filter, isfir(h) inspects filter h and
determines whether the filter, in transfer function form, has a scalar
denominator. If it does, it is an FIR filter.

Examples d = fdesign.lowpass;
h = design(d);
isfir(h)
ans =

1

returns 1 for the status of filter h; the filter is an FIR structure with
denominator reference coefficient equal to 1.

For multirate filters, isfir works the same way.

d = fdesign.interpolator(5); % Interpolate by 5.
h = design(d); % Use the default design method.
isfir(h)

ans =

1

Use isfir with adaptive filters as well.

See Also isallpass, islinphase, ismaxphase, isminphase, isreal, issos,
isstable

2-958

islinphase

Purpose Determine whether filter is linear phase

Syntax islinphase(h)
islinphase(h,tolerance)

Description islinphase(h) determines if the filter object h is linear phase, and
returns 1 if true and 0 if false. adapfilt, dfilt, and mfilt objects
work with islinphase.

islinphase(h,tolerance) uses input argument tolerance to
determine whether the filter coefficients are close enough in value to
be considered symmetric or antisymmetric, returning 1 if true (the
difference between the values is less than tolerance) and 0 if not.

The phase determination is based on the reference coefficients. A filter
has linear phase if it is FIR and its transfer function coefficients are
symmetric or antisymmetric. If it is IIR and it has poles on or outside
the unit circle and both numerator and denominator are symmetric or
antisymmetric, it is linear phase also.

Examples This IIR filter has linear phase.

d = fdesign.lowpass('n,fc',10,0.55);
h = design(d,'window');
islinphase(h)
ans =

1

Using the specification nb,na,fp,fst results in an IIR filter that is not
linear phase in this design.

nb=15
na=10
d=fdesign.lowpass('nb,na,fp,fst',nb,na,0.45,0.55)

d =

2-959

islinphase

Response: 'Lowpass'
Specification: 'Nb,Na,Fp,Fst'

Description: {4x1 cell}
NormalizedFrequency: true

NumOrder: 15
DenOrder: 10

Fpass: 0.45
Fstop: 0.55

h=design(d) % Use the default design method iirlpnorm.

h =

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [8x6 double]

ScaleValues: [-0.0051749857036492;1;1;1;1;1;1;1;1]
PersistentMemory: false

islinphase(h)

ans =

0

See Also isallpass, isfir, ismaxphase, isminphase, isreal, issos, isstable

2-960

ismaxphase

Purpose Determine whether filter is maximum phase

Syntax ismaxphase(h)
ismaxphase(h,tolerance)

Description ismaxphase(h) determines if the filter object h is maximum phase, and
returns 1 if true and 0 if false. adapfilt, dfilt, and mfilt objects
work with ismaxphase.

ismaxphase(h,tolerance) uses input argument tolerance to
determine whether the zeros of the filter transfer function have values
that are close enough to 1 to be considered 1 or greater (on or outside
the unit circle, returning 1 if true (the difference between the coefficient
value and 1 is less than tolerance) and 0 if not.

The phase determination is based on the reference coefficients. A filter
is maximum phase when the zeros of its transfer function are on or
outside the unit circle, or when the numerator is a scalar.

Examples Two examples show ismaxphase in use. The first is a discrete-time
dfilt object and the second an adaptive filter.

fp = 100;
fst= 120;
fs = 800;
ap = 1;
ast= 80;
d = fdesign.lowpass('fp,fst,ap,ast',fp,fst,ap,ast,fs);
h = design(d,'equiripple','minphase',true);
isminphase(h)

ans =

1

To make this a maximum phase filter, use fliplr to change the
coefficient order. Reordering the coefficients this way changes the phase
from minimum to maximum.

2-961

ismaxphase

h.numerator=fliplr(h.numerator);
ismaxphase(h)

ans =

1

returns 1 so this is a maximum phase filter. Compare to isminphase.

For the adaptive filter example, try the following code:

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 1; % NLMS step size
offset = 50; % NLMS offset
ha = adaptfilt.nlms(32,mu,1,offset);
[y,e] = filter(ha,x,d);

After adapting, ha is an FIR filter that does not exhibit maximum phase.

ismaxphase(ha)

ans =

0

See Also isallpass, isfir, islinphase, isminphase, isreal, issos, isstable

2-962

isminphase

Purpose Determine whether filter is minimum phase

Syntax isminphase(h)
isminphase(h,tolerance)

Description isminphase(h) determines if the filter object h is maximum phase, and
returns 1 if true and 0 if false. adapfilt, dfilt, and mfilt objects
work with isminphase.

isminphase(h,tolerance) uses input argument tolerance to
determine whether the values of the filter transfer function zeros are
close enough to 1 to be considered to be on the unit circle, returning 1 if
true (the difference between the transfer function zero values and 1 is
less than tolerance) and 0 if not.

The determination is based on the reference coefficients. A filter is
minimum phase when the zeros of its transfer function are on or inside
the unit circle, or the numerator is a scalar.

Examples This example creates a minimum-phase filter.

fp = 200;
fst= 230;
fs = 900;
ap = 1;
ast= 80;
d = fdesign.lowpass('fp,fst,ap,ast',fp,fst,ap,ast,fs);
h = design(d,'equiripple','minphase',true);
isminphase(h)

ans =

1

When you make h a fixed-point filter, the quantization process results
in the filter no longer being minimum phase.

h.arithmetic='fixed';

2-963

isminphase

isminphase(h)

ans =

0

See Also isallpass, isfir, islinphase, ismaxphase, isreal, issos, isstable,

2-964

isreal

Purpose Determine whether filter uses real coefficients

Syntax isreal(hd)

Description isreal(hd) returns 1 (or true) if all filter coefficients for the filter hd
are real, and returns 0 (or false) otherwise.

isreal(hd) returns 1 if all filter coefficients in filter hd have zero
imaginary part. Otherwise, isreal(hd) returns a 0 indicating that the
filter is complex. Complex filters have one or more coefficients with
nonzero imaginary parts.

Note Quantizing a filter cannot make a real filter into a complex filter.

Examples To demonstrate the isreal test, this example creates a double-precision
filter and fixed-point filter, and tests the coefficients of the fixed-point
filter to see if they are strictly real.

d=fdesign.lowpass('n,fp,ap,ast',5,0.4,0.5,20);
hd=design(d,'ellip')

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [3x6 double]

ScaleValues: [0.362583368859661;0.918321077151039;
0.496533475964919;1]

PersistentMemory: false

% Use d to design the fixed-point filter.
hq=design(d,'ellip');
% Convert to fixed-point arithmetic.
hq.arithmetic='fixed';
isreal(hq)

2-965

isreal

ans =

1

See Also isfir, islinphase, ismaxphase, isminphase, issos, isstable,
isallpass

2-966

issos

Purpose Determine whether filter is SOS form

Syntax issos(hd)

Description issos(hd) determines whether quantized filter hq consists of
second-order sections. Returns 1 if all sections of quantized filter hq
have order less than or equal to two, and 0 otherwise.

Examples By default, fdesign and design return SOS filters when possible. This
example designs a lowpass SOS filter that uses fixed-point arithmetic.

d=fdesign.lowpass('n,fp,ap,ast',40,0.55,0.1,60)

d =

Response: 'Lowpass'
Specification: 'N,Fp,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

FilterOrder: 40
Fpass: 0.55
Apass: 0.1
Astop: 60

designmethods(d)

Design Methods for class fdesign.lowpass (N,Fp,Ap,Ast):

ellip
equiripple

hd=design(d,'ellip');
hd.arithmetic='fixed';

issos(hd)

2-967

issos

ans =

1

Fixed-point filter hd is in second-order section form, as is the
double-precision version.

See Also isallpass, isfir, islinphase, ismaxphase, isminphase, isreal,
isstable

2-968

isstable

Purpose Determine whether filter is stable

Syntax isstable(hq)

Description isstable(hq) tests quantized filter hq to determine whether its poles
are inside the unit circle. If the poles lie on or outside the circle,
isstable returns 0. If the poles are inside the circle, isstable returns
1.

To determine the filter stability, isstable checks the filter coefficients.
When the poles lie on or inside the unit circle, the filter is stable. FIR
filters are stable by design since the defining transfer functions do not
have denominator polynomials, thus no feedback to cause instability.

Examples Since filter stability is very important in your design process, use
isstable to determine whether your double-precision or fixed-point
IIR filter is stable.

d=fdesign.nyquist(2,'n,tw',24,0.1);
hd=design(d,'iirlinphase')

hd =

FilterStructure: Cascade
Stage(1): Scalar
Stage(2): Parallel

Stage(1): Delay
Stage(2): Cascade

Stage(1): Delay
Stage(2): Cascade

PersistentMemory: false

isstable(hd)

ans =

1

2-969

isstable

hd2=design(d,'equiripple');
isstable(hd2)

ans =

1

See Also isallpass, isfir, islinphase, ismaxphase, isminphase, isreal,
issos, zplane

2-970

kaiserwin

Purpose Kaiser window filter from specification object

Syntax h = design(d,'kaiserwin')
h = design(d,'kaiserwin',designoption,value,designoption,...
value,...)

Description h = design(d,'kaiserwin') designs a digital filter hd, or a multirate
filter hm that uses a Kaiser window. For kaiserwin to work properly, the
filter order in the specifications object must be even. In addition, higher
order filters (filter order greater than 120) tend to be more accurate for
smaller transition widths. kaiserwin returns a warning when your
filter order may be too low to design your filter accurately.

h =
design(d,'kaiserwin',designoption,value,designoption,...
value,...) returns a filter where you specify design options as input
arguments and the design process uses the Kaiser window technique.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as
shown.

designopts(d,'method')

For complete help about using kaiserwin, refer to the command line
help system. For example, to get specific information about using
kaiserwin with d, the specification object, enter the following at the
MATLAB prompt.

help(d,'kaiserwin')

Examples This example designs a direct form FIR filter from a halfband filter
specification object.

d=fdesign.halfband('n,tw',100,0.004)

d =

2-971

kaiserwin

Response: 'Halfband with filter order and transition width'

Specification: 'N,TW'

Description: {2x1 cell}

NormalizedFrequency: true

Fs: 'Normalized'

FilterOrder: 100

TransitionWidth: 0.0040

designopts(d,'kaiserwin')

ans =

FilterStructure: 'dffir'

hd= design(d,'kaiserwin','filterstructure','dffir')

Warning: Filter order is too low. Design may be inaccurate.

hd =

FilterStructure: 'Direct-Form FIR'

Arithmetic: 'double'

Numerator: [1x101 double]

ResetBeforeFiltering: 'on'

States: [100x1 double]

In this example, kaiserwin uses an interpolating filter specification
object to implement a multirate filter.

d=fdesign.interp(4,'pl,tw',120,0.004)

d =

Response: [1x46 char]
Specification: 'PL,TW'

Description: {2x1 cell}
InterpolationFactor: 4
NormalizedFrequency: true

Fs: 'Normalized'

2-972

kaiserwin

PolyphaseLength: 120
TransitionWidth: 0.0040

hm = design(d,'kaiserwin')

hm =

FilterStructure: 'Direct-Form FIR Polyphase
Interpolator'

Numerator: [1x480 double]
InterpolationFactor: 4

ResetBeforeFiltering: 'on'
States: [119x1 double]

With the polyphase length of 120 you do not see the warning about
the filter accuracy. Increasing the transition width tw can also reduce
the possible inaccuracies.

FVTool shows clearly the multirate filter hm.

2-973

kaiserwin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

See Also equiripple, firls

2-974

lagrange

Purpose Fractional delay filter from fdesign.fracdelay specification object

Syntax hd = lagrange(d)
hd = design(d,'lagrange')
hd = design(d,'lagrange',FilterStructure,structure)

Description hd = lagrange(d) returns a fractional delay filter based on the
Lagrange design method. By default, the filter provides the fractional
delay filter design structure fd. Provide the fractional delay value in
samples, between 0 and 1. This is the only available structure.

hd = design(d,'lagrange') is identical to hd = lagrange(d).

hd = design(d,'lagrange',FilterStructure,structure) specifies the
Lagrange design method and the structure filter structure for hd. The
sole valid filter structure string for structure is fd, describing the
fractional delay structure.

Examples This example uses a fractional delay of 0.30 samples. The help and
designopts commands provide the details about designing fractional
delay filters.

d=fdesign.fracdelay(.30)

d =

Response: 'Fractional Delay'
Specification: 'N'

Description: {'Filter Order'}
FracDelay: 0.3

NormalizedFrequency: true
FilterOrder: 3

designmethods(d)

Design Methods for class fdesign.fracdelay (N):

2-975

lagrange

lagrange

help(d,'lagrange')

DESIGN Design a Lagrange fractional delay filter.
HD = DESIGN(D, 'lagrange') designs a Lagrange filter

specified by the FDESIGN object D.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns
a filter with the structure STRUCTURE. STRUCTURE is 'fd'
by default and can be any of the following:

'fd'

% Example #1 - Design a linear Lagrange fractional
% delay filter of 0.2 samples.
h = fdesign.fracdelay(0.2,'N',2);
Hd = design(h, 'lagrange', 'FilterStructure', 'fd')

% Example #2 - Design a cubic Lagrange fractional
% delay filter.
Fs = 8000; % Sampling frequency of 8kHz
fdelay = 50e-6; % Fractional delay of 50 microseconds.
h = fdesign.fracdelay(fdelay,'N',3,Fs);
Hd = design(h, 'lagrange', 'FilterStructure', 'fd');

This example designs a linear Lagrange fractional delay filter where
you set the delay to 0.2 seconds and the filter order N to 2.

h = fdesign.fracdelay(0.2,'N',2); .
hd = design(h,'lagrange','FilterStructure','fd')

Design a cubic Lagrange fractional delay filter with filter order equal
to 3..

Fs = 8000; % Sampling frequency of 8 kHz.

2-976

lagrange

fdelay = 50e-6; % Fractional delay of 50 microseconds.
h = fdesign.fracdelay(fdelay,'N',3,Fs);
hd = design(h,'lagrange','FilterStructure','fd');

Reference Laakso, T. I., V. Välimäki, M. Karjalainen, and Unto K. Laine, “Splitting
the Unit Delay - Tools for Fractional Delay Filter Design,” IEEE Signal
Processing Magazine, Vol. 13, No. 1, pp. 30-60, January 1996.

See Also design, designmethods, designopts, fdesign, fdesign.fracdelay

2-977

limitcycle

Purpose Response of single-rate, fixed-point IIR filter

Syntax report = limitcycle(hd)
report = limitcycle(hd,ntrials,inputlengthfactor,stopcriterion)

Description report = limitcycle(hd) returns the structure report that contains
information about how filter hd responds to a zero-valued input vector.
By default, the input vector has length equal to twice the impulse
response length of the filter.

limitcycle returns a structure whose elements contain the details
about the limit cycle testing. As shown in this table, the report includes
the following details.

Output Object
Property Description

LimitCycleType Contains one of the following results:

• Granular — indicates that a granular
overflow occurred.

• Overflow — indicates that an overflow
limit cycle occurred.

• None — indicates that the test did not find
any limit cycles.

Zi Contains the initial condition value(s) that
caused the detected limit cycle to occur.

Output Contains the output of the filter in the steady
state.

Trial Returns the number of the Monte Carlo trial
on which the limit cycle testing stopped. For
example, Trial = 10 indicates that testing
stopped on the tenth Monte Carlo trial.

2-978

limitcycle

Using an input vector longer than the filter impulse response ensures
that the filter is in steady-state operation during the limit cycle testing.
limitcycle ignores output that occurs before the filter reaches the
steady state. For example, if the filter impulse length is 500 samples,
limitcycle ignores the filter output from the first 500 input samples.

To perform limit cycle testing on your IIR filter, you must set the filter
Arithmetic property to fixed and hd must be a fixed-point IIR filter of
one of the following forms:

• df1 — direct-form I

• df1t — direct-form I transposed

• df1sos — direct-form I with second-order sections

• df1tsos — direct-form I transposed with second-order sections

• df2 — direct-form II

• df2t — direct-form II transposed

• df2sos — direct-form II with second-order sections

• df2tsos — direct-form II transposed with second-order sections

When you use limitcycle without optional input arguments, the
default settings are

• Run 20 Monte Carlo trials

• Use an input vector twice the length of the filter impulse response

• Stop testing if the simulation process encounters either a granular or
overflow limit cycle

To determine the length of the filter impulse response, use impzlength:

impzlength(hd)

2-979

limitcycle

During limit cycle testing, if the simulation runs reveal both overflow
and granular limit cycles, the overflow limit cycle takes precedence and
is the limit cycle that appears in the report.

Each time you run limitcycle, it uses a different sequence of random
initial conditions, so the results can differ from run to run.

Each Monte Carlo trial uses a new set of randomly determined
initial states for the filter. Test processing stops when
limitcycle detects a zero-input limit cycle in filter hd. report =
limitcycle(hd,ntrials,inputlengthfactor,stopcriterion) lets
you set the following optional input arguments:

• ntrials — Number of Monte Carlo trials (default is 20).

• inputlengthfactor — integer factor used to calculate the
length of the input vector. The length of the input vector
comes from (impzlength(hd) * inputlengthfactor), where
inputlengthfactor = 2 is the default value.

• stopcriterion — the criterion for stopping the Monte Carlo trial
processing. stopcriterion can be set to either (the default),
granular, overflow. This table describes the results of each stop
criterion.

stopcriterion
Setting Description

either Stop the Monte Carlo trials when
limitcycle detects either a granular or
overflow limit cycle.

granular Stop the Monte Carlo trials when
limitcycle detects a granular limit cycle.

overflow Stop the Monte Carlo trials when
limitcycle detects an overflow limit cycle.

2-980

limitcycle

Note An important feature is that if you specify a specific limit cycle
stop criterion, such as overflow, the Monte Carlo trials do not stop
when testing encounters a granular limit cycle. You receive a warning
that no overflow limit cycle occurred, but consider that a granular
limit cycle might have occurred.

Examples In this example, there is a region of initial conditions in which no limit
cycles occur and a region where they do. If no limit cycles are detected
before the Monte Carlo trials are over, the state sequence converges to
zero. When a limit cycle is found, the states do not end at zero. Each
time you run this example, it uses a different sequence of random initial
conditions, so the plot you get can differ from the one displayed in the
following figure.

s = [1 0 0 1 0.9606 0.9849];

hd = dfilt.df2sos(s);

hd.arithmetic = 'fixed';

greport = limitcycle(hd,20,2,'granular')

oreport = limitcycle(hd,20,2,'overflow')

figure,

subplot(211),plot(greport.Output(1:20)), title('Granular Limit Cycle');

subplot(212),plot(oreport.Output(1:20)), title('Overflow Limit Cycle');

greport =

LimitCycle: 'granular'

Zi: [2x1 double]

Output: [1303x1 embedded.fi]

Trial: 1

oreport =

LimitCycle: 'overflow'

Zi: [2x1 double]

Output: [1303x1 embedded.fi]

2-981

limitcycle

Trial: 2

The plots shown in this figure present both limit cycle types — the first
displays the small amplitude granular limit cycle, the second the larger
amplitude overflow limit cycle.

0 2 4 6 8 10 12 14 16 18 20
−5

0

5
x 10

−4 Granular Limit Cycle

Output Sample

0 2 4 6 8 10 12 14 16 18 20
0.6787

0.6788

0.6789

0.679

0.6791

0.6792

Overflow Limit Cycle

Output Sample

As you see from the plots, and as is generally true, overflow limit cycles
are much greater magnitude than granular limit cycles. This is why
limitcycle favors overflow limit cycle detection and reporting.

See Also freqz, noisepsd

2-982

maxstep

Purpose Maximum step size for adaptive filter convergence

Syntax mumax = maxstep(ha,x)
[mumax,mumaxmse] = maxstep(ha,x)

Description mumax = maxstep(ha,x) predicts a bound on the step size to provide
convergence of the mean values of the adaptive filter coefficients. The
columns of the matrix x contain individual input signal sequences. The
signal set is assumed to have zero mean or nearly so.

[mumax,mumaxmse] = maxstep(ha,x) predicts a bound on the adaptive
filter step size to provide convergence of the LMS adaptive filter
coefficients in the mean-square sense. maxstep issues a warning when
ha.stepsize is outside of the range 0 < ha.stepsize < mumaxmse/2.

maxstep is available for the following adaptive filter objects:

• adaptfilt.blms

• adaptfilt.blmsfft

• adaptfilt.lms

• adaptfilt.nlms (uses a different syntax. Refer to the text below.)

• adaptfilt.se

Note With adaptfilt.nlms filter objects, maxstep uses the following
slightly different syntax:

mumax = maxstep(ha)
[mumax,mumaxmse] = maxstep(ha)

The maximum step size for convergence is fully defined by the filter
object ha. Matrix x is not necessary. If you include an x input matrix,
MATLAB returns an error.

2-983

maxstep

Examples Analyze and simulate a 32-coefficient (31st-order) LMS adaptive filter
object. To demonstrate the adaptation process, run 2000 iterations and
50 trials.

% Specify [numiterations,numexamples] = size(x);

x = zeros(2000,50);

d = x;

obj = fdesign.lowpass('n,fc',31,0.5);

hd = design(obj,'window'); % FIR filter to identified.

coef = cell2mat(hd.coefficients); % Convert cell array to matrix.

for k=1:size(x,2); % Create input and desired response signal

% matrices.

% Set the (k)th input to the filter.

x(:,k) = filter(sqrt(0.75),[1 -0.5],sign(randn(size(x,1),1)));

n = 0.1*randn(size(x,1),1); % (k)th observation noise signal.

d(:,k) = filter(coef,1,x(:,k))+n; % (k)th desired signal end.

end

mu = 0.1; % LMS step size.

ha = adaptfilt.lms(32,mu);

[mumax,mumaxmse] = maxstep(ha,x);

Warning: Step size is not in the range 0 < mu < mumaxmse/2:

Erratic behavior might result.

mumax

mumax =

0.0623

mumaxmse

mumaxmse =

0.0530

2-984

maxstep

See Also msepred, msesim, filter

2-985

measure

Purpose Measure filter magnitude response

Syntax measure(hd)
measure(hm)

Description measure(hd) returns measured values for specific points in the
magnitude response curve for filter object hd. When you use a design
object d to create a filter (by using fdesign.type to create d), you
specify one or more values that define your desired filter response.
measure(hd) tests the filter to determine the actual values in the
magnitude response of the filter, such as the stopband attenuation or
the passband ripple. Comparing the results returned by measure to
the specifications you provided in the design object helps you assess
whether the filter meets your design criteria.

Note To use measure, hd or hm must result from using a filter design
method with a filter specifications object. measure works with multirate
filters and discrete-time filters. It does not support adaptive filters
because you cannot use fdesign.type to construct adaptive filter
specifications objects.

measure(hd) returns specifications determined by the response type of
the design object you use to create the filter. For example, for single-rate
lowpass filters made from design objects, measure(hd) returns the
following filter specifications.

Lowpass Filter
Specification Description

Sampling Frequency Filter sampling frequency.

Passband Edge Location of the edge of the passband as it
enters transition.

3-dB Point Location of the -3 dB point on the response
curve.

2-986

measure

Lowpass Filter
Specification Description

6-dB Point Location of the -6 dB point on the response
curve.

Stopband Edge Location of the edge of the transition band as
it enters the stopband.

Passband Ripple Ripple in the passband.

Seopband Atten. Attenuation in the stopband.

Transition Width Width of the transition between the passband
and stopband, in normalized frequency or
absolute frequency. Measured between
Fpass and Fstop.

In contrast, when you use a bandstop design object, measure(hd)
returns these specifications for the resulting bandstop filter.

Bandstop Filter
Specification Description

Sampling Frequency Filter sampling frequency.

First Passband
Edge

Location of the edge of the first passband.

First 3-dB Point Location of the edge of the -3 dB point in the
first transition band.

First 6-dB Point Location of the edge of the -6 dB point in the
first transition band.

First Stopband
Edge

Location of the start of the stopband.

Second Stopband
Edge

Location of the end of the stopband.

Second 6-dB Point Location of the edge of the -6 dB point in the
second transition band.

2-987

measure

Bandstop Filter
Specification Description

Second 3-dB Point Location of the edge of the -3 dB point in the
second transition band.

Second Passband
Edge

Location of the start of the second passband.

First Passband
Ripple

Ripple in the first passband.

Stopband Atten. Attenuation in the stopband.

Second Passband
Edge

Ripple in the second passband.

First Transition
Width

Width of the first transition region.
Measured between the -3 and -6 dB points.

Second Transition
Width

Width of the second transition region.
Measured between the -6 and -3 dB points.

Filters from different filter responses return their designated sets
of specifications. Also, whether the filter is single-rate or multirate
changes the list of specifications that measure tests.

measure(hm) is the same as measure(hd), where hm is a multirate filter
object. For multirate filters, the set of filter specifications that measure
returns might be different from the discrete-filter set.

The set of response measurements that measure returns depends on
the response you use to design the filter. When hm is an FIR lowpass
interpolator (response is lowpass), for example, measure(hm) returns
this set of measurements.

2-988

measure

Interpolator Filter
Specification Description

First Passband
Edge

Location of the edge of the passband as it
enters transition.

3-dB Point Location of the -3 dB point on the response
curve.

6-dB Point Location of the -6 dB point on the response
curve.

Stopband Edge Location of the edge of the transition band as
it enters the stopband.

Passband Ripple Ripple in the passband.

Stopband Atten. Attenuation in the stopband.

Transition Width Width of the transition between the passband
and stopband, in normalized frequency or
absolute frequency. Measured between Fpass
and Fstop.

For reference, this is the specification object d that created the
interpolator specifications shown in the preceding table.

d=fdesign.interpolator(6,'lowpass')

d =

MultirateType: 'Interpolator'
InterpolationFactor: 6

Response: 'Lowpass'
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

Fpass: 0.133333333333333
Fstop: 0.166666666666667
Apass: 1
Astop: 60

2-989

measure

Examples For the first example, create a lowpass filter and check whether the
actual filter meets the specifications. For this case, use normalized
frequency for Fs, the default setting.

d2=fdesign.lowpass('Fp,Fst,Ap,Ast',0.45,0.55,0.1,80)

d2 =

Response: 'Lowpass'
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

Fpass: 0.45
Fstop: 0.55
Apass: 0.1
Astop: 80

designmethods(d2)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

hd2=design(d2) % Use the default equiripple design method.

hd2 =

FilterStructure: 'Direct-Form FIR'

2-990

measure

Arithmetic: 'double'
Numerator: [1x68 double]

PersistentMemory: false

measure(hd2)

ans =

Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.45
3-dB Point : 0.47794
6-dB Point : 0.48909
Stopband Edge : 0.55
Passband Ripple : 0.09615 dB
Stopband Atten. : 80.2907 dB
Transition Width : 0.1

Stopband Edge, Passband Edge, Passband Ripple, and Stopband
Atten. all meet the specifications.

Now, using Fs in linear frequency, create a bandpass filter and measure
the magnitude response characteristics.

d=fdesign.bandpass

d =

Response: 'Bandpass'
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'

Description: {7x1 cell}
NormalizedFrequency: true

Fstop1: 0.35
Fpass1: 0.45
Fpass2: 0.55
Fstop2: 0.65
Astop1: 60
Apass: 1

Astop2: 60

2-991

measure

normalizefreq(d,false,1.5e3) % Convert to linear freq.

hd=design(d,'cheby2');

measure(hd)

ans =

Sampling Frequency : 1.5 kHz
First Stopband Edge : 0.2625 kHz
First 6-dB Point : 0.31996 kHz
First 3-dB Point : 0.32497 kHz
First Passband Edge : 0.3375 kHz
Second Passband Edge : 0.4125 kHz
Second 3-dB Point : 0.42503 kHz
Second 6-dB Point : 0.43004 kHz
Second Stopband Edge : 0.4875 kHz
First Stopband Atten. : 60 dB
Passband Ripple : 0.17985 dB
Second Stopband Atten. : 60 dB
First Transition Width : 0.075 kHz
Second Transition Width : 0.075 kHz

measure(hd) returns the actual response values, in the units you chose.
In this example, all frequencies appear in Hz because the sampling
frequency is Hz.

See Also design, fdesign, normalizefreq

2-992

mfilt

Purpose Multirate filter

Syntax hm = mfilt.structure(input1,input2,...)

Description hm = mfilt.structure(input1,input2,...) returns the object hm
of type structure. As with dfilt and adaptfilt objects, you must
include the structure string to construct a multirate filter object.
You can, however, construct a default multirate filter object of a given
structure by not including input arguments in your calling syntax.

Multirate filters include decimators and interpolators, and fractional
decimators and fractional interpolators where the resulting
interpolation or decimation factor is not an integer.

Structures

Each of the following multirate filter structures has a reference page
of its own.

Filter Structure
String Description of Resulting Multirate Filter

mfilt.cascade Cascade multirate filters to form another
filter

mfilt.cicdecim Cascaded integrator-comb decimator

mfilt.cicinterp Cascaded integrator-comb interpolator

mfilt.farrowsrc Multirate Farrow filter

mfilt.fftfirinterp Overlap-add FIR polyphase interpolator

mfilt.firdecim Direct-form FIR polyphase decimator

mfilt.firfracdecim Direct-form FIR polyphase fractional
decimator

mfilt.firfracinterp Direct-form FIR polyphase fractional
interpolator

mfilt.firinterp Direct-form FIR polyphase interpolator

2-993

mfilt

Filter Structure
String Description of Resulting Multirate Filter

mfilt.firsrc Direct-form FIR polyphase sample rate
converter

mfilt.firtdecim Direct-form transposed FIR polyphase
decimator

mfilt.holdinterp FIR hold interpolator

mfilt.iirdecim IIR decimator

mfilt.iirinterp IIR interpolator

mfilt.linearinterp FIR Linear interpolator

mfilt.iirwdfdecim IIR wave digital filter decimator

mfilt.iirwdfinterp IIR wave digital filter interpolator

Copying mfilt Objects

To create a copy of an mfilt object, use the copy method.

h2 = copy(hd)

Note The syntax hd2 = hd copies only the object handle. It does not
create a new object. hd2 and hd are not independent. If you change
the property value for one of the two, such as hd2, you are changing
the property for both.

Examples Create an FIR decimator that uses a decimation factor equal to three.
In this case, the only input argument needed is m, the decimation factor.
Other input arguments are available — refer to the reference page for
the structure that interests you for more information.

m=3;

hm=mfilt.firdecim(m)

2-994

mfilt

hm =

FilterStructure: 'Direct-Form FIR Polyphase Decimator'

Numerator: [1x73 double]

DecimationFactor: 3

NumberOfSamplesProcessed: 0

ResetStates: 'on'

States: [72x1 double]

To demonstrate a few of the methods that apply to multirate filters,
here are two examples of using hm, your FIR decimator.

Use the Filter Visualization tool to review the magnitude response of
your decimator.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

2-995

mfilt

Now check to see if your filter is stable.

isstable(hm)

ans =

1

Finally, pass a signal through the filter to see if it indeed decimates
by three.

m = 3; % Decimation factor

hm = mfilt.firdecim(m); % We use the default filter

fs = 44.1e3; % Original sample freq: 44.1kHz.

n = 0:10239; % 10240 samples, 0.232 second long

% signal

x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz

y = filter(hm,x); % 5120 samples, still 0.232 seconds

stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1kHz

hold on % Plot decimated signal (22.05kHz) in red

stem(n(1:22)/(fs/m),y(13:34),'r','filled')

xlabel('Time (sec)');ylabel('Signal Value')

Here is the stem plot that shows the result of the decimation process.

2-996

mfilt

0 0.5 1 1.5

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

hm =
FilterStructure: 'Direct-Form FIR Polyphase

Decimator'
Numerator: [1x73 double]

DecimationFactor: 3
PersistentMemory: 'on'

States: [72x1 double]

The filter processes 10239 samples with 1 unprocessed sample whose
value is 0.8963. One nonprocessed sample results from dividing the
number of samples, 10240, by the decimation factor, 3, to get 3413
output samples and one left over.

2-997

mfilt

Note Multirate filters can also have complex coefficients. For example,
you can specify complex coefficients in the argument num passed to the
filter structure. This works for all multirate filter structures.

m = 2;
num = [0.5 0.5+0.2*i];
Hm = mfilt.firdecim(m, num);
y = filter(Hm, [1:10]);

See Also mfilt.firfracdecim, mfilt.firfracinterp, mfilt.firinterp,
mfilt.firsrc, mfilt.firtdecim

2-998

mfilt.cascade

Purpose Cascade filter objects

Syntax hm = cascade(hm1,hm2,...,hmn)

Description hm = cascade(hm1,hm2,...,hmn) creates filter object hm by cascading
(connecting in series) the individual filter objects hm1, hm2, and so on
to hmn.

In block diagram form, the cascade looks like this, with x as the input to
the filter hm and y the output from the cascade filter hm:

mfilt.cascade accepts any combination of mfilt and dfilt objects
(discrete time filters) to cascade, as well as Farrow filter objects.

Examples Create a variety of mfilt objects and cascade them together.

hm(1) = mfilt.firdecim(12);
hm(2) = mfilt.firdecim(4);
h1 = mfilt.cascade(hm(1),hm(2));

hm(3) = mfilt.firinterp(4);
hm(4) = mfilt.firinterp(12);
h2 = mfilt.cascade(hm(3),hm(4));

Now cascade h1 and h2 together to get another multirate filter.

h3 = mfilt.cascade(h1,h2,9600);

See Also dfilt.cascade in Signal Processing Toolbox documentation

2-999

mfilt.cicdecim

Purpose Fixed-point CIC decimator

Syntax hm = mfilt.cicdecim(r,m,n,iwl,owl,wlps)

Description hm = mfilt.cicdecim(r,m,n,iwl,owl,wlps) returns a cascaded
integrator-comb (CIC) decimation filter object. All of the input
arguments are optional.

All of the input arguments are optional. To enter any optional value,
you must include all optional values to the left of your desired value.

When you omit one or more input options, the omitted option applies
the default values shown in the table below.

The following table describes the input arguments for creating hm.

Input
Arguments Description

r Decimation factor applied to the input signal.
Sharpens the response curve to let you change the
shape of the response. Default value is 2.

m Differential delay. Changes both the shape and
number of nulls in the filter response. Also affects
the null locations. Increasing m increases the
number and sharpness of the nulls and response
between nulls. Generally, one or two work best as
values for m. Default is 1.

n Number of sections. Deepens the nulls in the
response curve. Note that this is the number of
either comb or integrator sections, not the total
section count. 2 is the default value.

iwl Word length of the input signal. Use any integer
number of bits. The default value is 16 bits.

2-1000

mfilt.cicdecim

Input
Arguments Description

owl Word length of the output signal. It can be any
positive integer number of bits. By default, owl is
16 bits.

wlps Defines the number of bits per word in each
filter section while accumulating the data in the
integrator sections or while subtracting the data
during the comb sections (using ’wrap’ arithmetic).
Enter wlps as a scalar or vector of length 2*n,
where n is the number of sections. When wlps is
a scalar, the scalar value is applied to each filter
section. The default is 16 for each section in the
decimator.

When you elect to specify wlps as an input
argument, the SectionWordLengthMode property
automatically switches from the default value of
MinWordLengths to SpecifyWordLengths.

Constraints and Word Length Considerations

CIC decimators have the following constraint — the word lengths of the
filter section must be monotonically decreasing. The word length of
each filter section must be the same size as, or smaller than, the word
length of the previous filter section.

The formula for Bmax, the most significant bit at the filter output, is
given in the Hogenauer paper in the References below.

where Bin is the number of bits of the input.

The cast operations shown in the diagram in “Algorithm” on page
2-1017 perform the changes between the word lengths of each section.
When you specify word lengths that do not follow the constraints above,
the constructor returns an error.

2-1001

mfilt.cicdecim

When you specify the word lengths correctly, the most significant bit
Bmax stays the same throughout the filter, while the word length of
each section either decreases or stays the same. This can cause the
fraction length to change throughout the filter as least significant bits
are truncated to decrease the word length, as shown in “Algorithm”
on page 2-1017.

Properties of the Object

Objects have properties that control the way the object behaves. This
table lists all the properties for the filter, with a description of each.

Name Values Default Description

Arithmetic fixed fixed Reports the kind of
arithmetic the filter
uses. CIC decimators
are always fixed-point
filters.

DecimationFactor Any positive integer 2 Amount to reduce the
input sampling rate.

DifferentialDelay Any integer 1 Sets the differential
delay for the filter.
Usually a value of one
or two is appropriate.

FilterStructure mfilt structure
string

None Reports the type of
filter object. You cannot
set this property — it
is always read only
and results from your
choice of mfilt objects.

2-1002

mfilt.cicdecim

Name Values Default Description

FilterInternals FullPrecision,
MinWordLengths,
SpecifyPrecision,
SpecifyWordLengths

FullPrecision Set the usage mode
for the filter. Refer
to “Usage Modes” on
page 2-1008 below for
details.

InputFracLength Any positive integer 15 The number of bits
applied to the fraction
length to interpret the
input data to the filter.

InputOffset 0 -> r. 0 Indicates the length of
the output signal given
the length of the input
signal. InputOffset
starts at zero and
cycles through the
phases as follows for
each input sample:
0->r->(r-1)->
(r-2)->(r-p)->0
where p = r-1.

InputWordLength Any positive integer 16 The number of bits
applied to the word
length to interpret the
input data to the filter.

NumberOfSections Any positive integer 2 Number of sections
used in the decimator.
Generally called n.
Reflects either the
number of decimator
or comb sections, not
the total number of
sections in the filter.

2-1003

mfilt.cicdecim

Name Values Default Description

OutputFracLength Any positive integer 15 The number of bits
applied to the fraction
length to interpret the
output data from the
filter. Read-only.

2-1004

mfilt.cicdecim

Name Values Default Description

OutputWordLength Any positive integer 16 The number of bits
applied to the word
length to interpret the
output data from the
filter.

PersistentMemory false or true false Determines whether
the filter states get
restored to their
starting values for each
filtering operation.
The starting values
are the values in place
when you create the
filter if you have not
changed the filter since
you constructed it.
PersistentMemory
returns to zero any
state that the filter
changes during
processing. States
that the filter does
not change are not
affected. When
PersistentMemory
is false, you cannot
access the filter
states. Setting
PersistentMemory
to true reveals the
States property so you
can modify the filter
states.

2-1005

mfilt.cicdecim

Name Values Default Description

SectionWord
Lengths

Any integer or a
vector of length 2*n.

16 Defines the bits per
section used while
accumulating the data
in the integrator
sections or while
subtracting the data
during the comb
sections (using ’wrap’
arithmetic). Enter
SectionWordLengths
as a scalar or vector
of length 2*n, where
n is the number
of sections. When
SectionWordLengths
is a scalar, the scalar
value is applied to each
filter section. When
SectionWordLengths
is a vector of values,
the values apply to
the sections in order.
The default is 16 for
each section in the
decimator. Available
when SectionWord-
LengthMode is
SpecifyWordLengths.

2-1006

mfilt.cicdecim

Name Values Default Description

SectionWord
LengthMode

MinWordLengths
or SpecifyWord
Lengths

MinWordLength Determines whether
the filter object sets the
section word lengths
or you provide the
word lengths explicitly.
By default, the filter
uses the input and
output word lengths
in the command to
determine the optimal
word lengths for each
section, according to
the information in
[1]. When you choose
SpecifyWordLengths,
you provide the word
length for each section.
In addition, choosing
SpecifyWordLengths
exposes the
SectionWordLengths
property for you to
modify as needed.

2-1007

mfilt.cicdecim

Name Values Default Description

States filtstates.cic
object

m+1-by-n matrix of
zeros, after you call
function int.

Stored conditions for the
filter, including values
for the integrator and
comb sections before
and after filtering. m is
the differential delay
of the comb section
and n is the number of
sections in the filter.
The integrator states
are stored in the first
matrix row. States for
the comb section fill
the remaining rows in
the matrix. Available
for modification when
PersistentMemory is
true. Refer to the
filtstates object
in Signal Processing
Toolbox for more general
information about the
filtstates object.

Usage Modes

There are four modes of usage for this which are set using the
FilterInternals property

• FullPrecision — All word and fraction lengths set to Bmax + 1,
called Baccum by fred harris in [3]. Full Precision is the default setting.

• MinWordLengths — Automatically set the sections for minimum
word lengths.

• SpecifyWordLengths — Specify the word lengths for each section.

2-1008

mfilt.cicdecim

• SpecifyPrecision — Specify precision by providing values for the
word and fraction lengths for each section.

Full Precision

In full precision mode, the word lengths of all
sections and the output are set to Baccum as defined by

where Nsecs
is the number of filter sections.

Section fraction lengths and the fraction length of the output are set to
the input fraction length.

Here is the display looks for this mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision'

Minimum Wordlengths

In minimum word length mode, you control the output word length
explicitly. When the output word length is less than Baccum, roundoff
noise is introduced at the output of the filter. Hogenauer’s bit pruning
theory (refer to [1]) states that one valid design criterion is to make the
word lengths of the different sections of the filter smaller than Baccum
as well, so that the roundoff noise introduced by all sections does not
exceed the roundoff noise introduced at the output.

In this mode, the design calculates the word lengths of each section to
meet the Hogenauer criterion. The algorithm subtracts the number

2-1009

mfilt.cicdecim

of bits computed using eq. 21 in Hogenauer’s paper from Baccum to
determine the word length each section.

To compute the fraction lengths of the different sections, the algorithm
notes that the bits thrown out for this word length criterion are least
significant bits (LSB), therefore each bit thrown out at a particular
section decrements the fraction length of that section by one bit
compared to the input fraction length. Setting the output wordlength
for the filter automatically sets the output fraction length as well.

Here is the display for this mode:

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'MinWordLengths'

OutputWordLength: 16

Specify word lengths

In this mode, the design algorithm discards the LSBs, adjusting the
fraction length so that unrecoverable overflow does not occur, always
producing a reasonable output.

You can specify the word lengths for all sections and the output, but you
cannot control the fraction lengths for those quantities.

To specify the word lengths, you enter a vector of length
2*(NumberOfSections), where each vector element represents the
word length for a section. If you specify a scalar, such as Baccum, the
full-precision output word length, the algorithm expands that scalar to a
vector of the appropriate size, applying the scalar value to each section.

2-1010

mfilt.cicdecim

The CIC design does not check that the specified word lengths are
monotonically decreasing. There are some cases where the word lengths
are not necessarily monotonically decreasing, for example

hcic=mfilt.cicdecim;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;

which are valid CIC filters but the word lengths do not decrease
monotonically across the sections.

Here is the display looks like for the SpecifyWordLengths mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyWordLengths'

SectionWordLengths: [19 18 18 17]

OutputWordLength: 16

Specify precision

In this mode, you have full control over the word length and fraction
lengths of all sections and the filter output.

When you elect the SpecifyPrecision mode, you must enter a vector
of length 2*(NumberOfSections) with elements that represent the
word length for each section. When you enter a scalar such as Baccum,
mfilt.cicdecim expands that scalar to a vector of the appropriate size

2-1011

mfilt.cicdecim

and applies the scalar value to each section and the output. The design
does not check that this vector is monotonically decreasing.

Also, you must enter a vector of length 2*(NumberOfSections) with
elements that represent the fraction length for each section as well.
When you enter a scalar such as Baccum, mfilt.cicdecim applies scalar
expansion as done for the word lengths.

Here is the SpecifyPrecision display.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyPrecision'

SectionWordLengths: [19 18 18 17]
SectionFracLengths: [14 13 13 12]

OutputWordLength: 16
OutputFracLength: 11

About the States of the Filter

In the states property you find the states for both the integrator and
comb portions of the filter. states is a matrix of dimensions m + 1-by-n,
with the states apportioned as follows:

• States for the integrator portion of the filter are stored in the first
row of the state matrix.

• States for the comb portion fill the remaining rows in the state
matrix..

2-1012

mfilt.cicdecim

To review the states of a CIC filter, use int to assign the states to
a variable in MATLAB. As an example, here are the states for a CIC
decimator hm before and after filtering a data set.

x = fi(ones(1,10),true,16,0); % Fixed-point input data.
hm = mfilt.cicdecim(2,1,2,16,16,16);
sts=int(hm.states)

sts =

0 0
0 0

set(hm,'InputFracLength',0); % Integer input specified.
y=filter(hm,x)

sts=int(hm.states)

sts =

10 45
28 13

STS is an integer matrix that int returns from the contents of the
filtstates.cic object in hm.

Design Considerations

When you design your CIC decimation filter, remember the following
general points:

• The filter output spectrum has nulls at ω =k *2π/rm radians,
k= 1,2,3....

• Aliasing and imaging occur in the vicinity of the nulls.

• n, the number of sections in the filter, determines the passband
attenuation. Increasing n improves the filter ability to reject aliasing
and imaging, but it also increases the droop (or rolloff) in the filter

2-1013

mfilt.cicdecim

passband. Using an appropriate FIR filter in series after the CIC
decimation filter can help you compensate for the induced droop.

• The DC gain for the filter is a function of the decimation factor.
Raising the decimation factor increases the DC gain.

Examples This example applies a decimation factor r equal to 8 to a 160-point
impulse signal. The signal output from the filter has 160/r, or 20,
points or samples. Choosing 10 bits for the word length represents a
fairly common setting for analog to digital converters. The plot shown
after the code presents the stem plot of the decimated signal, with 20
samples remaining after decimation:

m = 2; % Differential delays in the filter.
n = 4; % Filter sections
r = 8 % Decimation factor
x = int16(zeros(160,1)); x(1) = 1; % Create a 160-point

% impulse signal.
hm = mfilt.cicdecim(r,m,n); % Expects 16-bit input

% by default.
y = filter(hm,x);
stem(double(y)); % Plot output as a stem plot.
xlabel('Samples'); ylabel('Amplitude');
title('Decimated Signal');

2-1014

mfilt.cicdecim

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

Samples

A
m

pl
itu

de

Decimated Signal

The next example demonstrates one way to compute the filter frequency
response, using a 4-section decimation filter with the decimation factor
set to 7:

hm = mfilt.cicdecim(7,1,4);
fvtool(hm)

FVTool provides ways for you to change the title and x labels to match
the figure shown. Here’s the frequency response plot for the filter.
For details about the transfer function used to produce the frequency
response, refer to [1] in the References section.

2-1015

mfilt.cicdecim

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−250

−200

−150

−100

−50

0

50

100

Normalized Frequency Relative to the High Sampling Rate (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Frequency Response for the Example CIC Decimation Filter

This final example demonstrates the decimator for converting from 44.1
kHz audio to 22.05 kHz — decimation by two. To overlay the before and
after signals, scale the output and plot the signals on a stem plot.

r = 2; % Decimation factor.

hm = mfilt.cicdecim(r); % Use default NumberOfSections &

% DifferentialDelay property values.

fs = 44.1e3; % Original sampling frequency: 44.1kHz.

n = 0:10239; % 10240 samples, 0.232 second long signal.

x = sin(2*pi*1e3/fs*n);% Original signal, sinusoid at 1kHz.

y_fi = filter(hm,x); % 5120 samples, still 0.232 seconds.

% Scale the output to overlay the stem plots.

2-1016

mfilt.cicdecim

x = double(x);

y = double(y_fi);

y = y/max(abs(y));

stem(n(1:44)/fs,x(2:45)); hold on; % Plot original signal

% sampled at 44.1kHz.

stem(n(1:22)/(fs/r),y(3:24),'r','filled'); % Plot decimated

% signal (22.05kHz)

% in red.

xlabel('Time (seconds)');ylabel('Signal Value');

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l v

al
ue

Original Signal
Decimated Signal

Algorithm To show how the CIC decimation filter is constructed, the following
figure presents a block diagram of the filter structure for a two-section
CIC decimation filter (n = 2).fs is the high sampling rate, the input
to the decimation process.

For details about the bits that are removed in the Comb section, refer
to [1] in References.

2-1017

mfilt.cicdecim

mfilt.cicdecim calculates the fraction length at each section of the
decimator to avoid overflows at the output of the filter.

See Also mfilt, mfilt.cicinterp

References [1] Hogenauer, E. B., “An Economical Class of Digital Filters for
Decimation and Interpolation,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, ASSP-29(2): pp. 155-162, 1981

[2] Meyer-Baese, Uwe, “Hogenauer CIC Filters,” in Digital Signal
Processing with Field Programmable Gate Arrays, Springer, 2001, pp.
155-172

[3] harris, fredric j, Multirate Signal Processing for Communication
Systems, Prentice-Hall PTR, 2004 , pp. 343

2-1018

mfilt.cicinterp

Purpose Fixed-point CIC interpolator

Syntax hm = mfilt.cicinterp(r,m,n,ilw,owl,wlps)
hm = mfilt.cicinterp
hm = mfilt.cicinterp(r,...)

Description hm = mfilt.cicinterp(r,m,n,ilw,owl,wlps) constructs a cascaded
integrator-comb (CIC) interpolation filter object that uses fixed-point
arithmetic.

All of the input arguments are optional. To enter any optional value,
you must include all optional values to the left of your desired value.

When you omit one or more input options, the omitted option applies
the default values shown in the table below.

The following table describes the input arguments for creating hm.

Input
Arguments Description

r Interpolation factor applied to the input signal.
Sharpens the response curve to let you change the
shape of the response. 2 is the default value.

m Differential delay. Changes both the shape and
number of nulls in the filter response. Also affects
the null locations. Increasing m increases the number
and sharpness of the nulls and response between
nulls. Generally, one or two work as values for m. 1
is the default.

n Number of sections. Deepens the nulls in the response
curve. Note that this is the number of either comb or
integrator sections, not the total section count. By
default, the filter has two sections.

iwl Word length of the input signal. Use any integer
number of bits. The default value is 16 bits.

2-1019

mfilt.cicinterp

Input
Arguments Description

owl Word length of the output signal. It can be any
positive integer number of bits. By default, owl is 16
bits.

wlps Defines the number of bits per word in each filter
section while accumulating the data in the integrator
sections or while subtracting the data during the
comb sections (using ’wrap’ arithmetic). Enter wlps
as a scalar or vector of length 2*n, where n is the
number of sections. When wlps is a scalar, the scalar
value is applied to each filter section. The default is
16 for each section in the integrator.

When you elect to specify wlps as an input argument,
the SectionWordLengthMode property automatically
switches from the default value of MinWordLengths
to SpecifyWordLengths.

hm = mfilt.cicinterp constructs the CIC interpolator using the
default values for the optional input arguments.

hm = mfilt.cicinterp(r,...) constructs the CIC interpolator
applying the values you provide for r and any other values you specify
as input arguments.

Constraints and Conversions

In Hogenauer [1], the author describes the constraints on CIC
interpolator filters. mfilt.cicinterp enforces a constraint—the word
lengths of the filter sections must be non-decreasing. That is, the word
length of each filter section must be the same size as, or greater than,
the word length of the previous filter section.

The formula for Wj, the minimum register width, is derived in [1]. The
formula for Wj is given by

2-1020

mfilt.cicinterp

where Gj, the maximum register growth up to the jth section, is given by

When the differential delay, M, is 1, there is also a special condition for
the register width of the last comb, WN, that is given by

The conversions denoted by the cast blocks in the integrator diagrams
in “Algorithm” on page 2-1034 perform the changes between the word
lengths of each section. When you specify word lengths that do not
follow the constraints described in this section, mfilt.cicinterp
returns an error.

The fraction lengths and scalings of the filter sections do not change. At
each section the word length is either staying the same or increasing.
The signal scaling can change at the output after the final filter section
if you choose the output word length to be less than the word length
of the final filter section.

2-1021

mfilt.cicinterp

Properties of the Object

Objects have properties that control the way the object behaves. This
table lists all the properties for the filter, with a description of each.

Name Values Default Description

Arithmetic fixed fixed Reports the kind of arithmetic
the filter uses. CIC
interpolators are always
fixed-point filters.

InterpolationFactor Any positive
integer

2 Amount to increase the input
sampling rate.

DifferentialDelay Any integer 1 Sets the differential delay for
the filter. Usually a value of
one or two is appropriate.

FilterStructure mfilt structure
string

None Reports the type of filter
object, such as a interpolator
or fractional integrator. You
cannot set this property —
it is always read only and
results from your choice of
mfilt objects.

FilterInternals FullPrecision,
MinWordLengths,
Specify
Precision,

SpecifyWord
Lengths

FullPrecision Set the usage mode for the
filter. Refer to “Usage Modes”
on page 2-1027 below for
details.

InputFracLength Any positive
integer

16 The number of bits applied
as the fraction length to
interpret the input data to
the filter.

2-1022

mfilt.cicinterp

Name Values Default Description

InputWordLength Any positive
integer

16 The number of bits applied to
the word length to interpret
the input data to the filter.

NumberOfSections Any positive
integer

2 Number of sections used in
the interpolator. Generally
called n. Reflects either the
number of interpolator or
comb sections, not the total
number of sections in the
filter.

OutputFracLength Any positive
integer

15 The number of bits applied
to the fraction length to
interpret the output data
from the filter. Read-only.

2-1023

mfilt.cicinterp

Name Values Default Description

OutputWordLength Any positive
integer

16 The number of bits applied to
the word length to interpret
the output data from the
filter.

PersistentMemory false or true false Determines whether the
filter states get restored
to their starting values for
each filtering operation.
The starting values are
the values in place when
you create the filter if
you have not changed the
filter since you constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does
not change are not affected.
When PersistentMemory
is false, you cannot access
the filter states. Setting
PersistentMemory to true
reveals the States property
so you can modify the filter
states.

2-1024

mfilt.cicinterp

Name Values Default Description

SectionWord
Lengths

Any integer
or a vector of
length 2*n.

16 Defines the bits per section used
while accumulating the data in the
integrator sections or while subtracting
the data during the comb sections
(using ’wrap’ arithmetic). Enter
SectionWordLengths as a scalar
or vector of length 2*n, where n
is the number of sections. When
SectionWordLengths is a scalar, the
scalar value is applied to each filter
section. When SectionWordLengths
is a vector of values, the values
apply to the sections in order.
The default is 16 for each section
in the interpolator. Available
when SectionWordLengthMode is
SpecifyWordLengths.

2-1025

mfilt.cicinterp

Name Values Default Description

SectionWord
LengthMode

MinWord
Lengths

SpecifyWord
Lengths

MinWordLength Determines whether
the filter object sets the
section word lengths or you
provide the word lengths
explicitly. By default, the
filter uses the input and
output word lengths in
the command to determine
the proper word lengths
for each section, according
to the information in
[1]. When you choose
SpecifyWordLengths,
you provide the word
length for each section.
In addition, choosing
SpecifyWordLengths
exposes the
SectionWordLengths
property for you to modify
as needed.

2-1026

mfilt.cicinterp

Name Values Default Description

States filtstates.cic
object

m+1-by-n matrix of
zeros, after you call
function int.

Stored conditions for the
filter, including values
for the integrator and
comb sections before and
after filtering. m is the
differential delay of the
comb section and n is
the number of sections in
the filter. The integrator
states are stored in the
first matrix row. States
for the comb section fill
the remaining rows in
the matrix. Available
for modification when
PersistentMemory is true.
Refer to the filtstates
object in Signal Processing
Toolbox for more general
information about the
filtstates object.

Usage Modes

There are four modes of usage for this which are set using the
FilterInternals property

• FullPrecision — All word and fraction lengths set to
Bmax + 1, called Baccum by fred harris in [3]. Full Precision is the
default setting.

• MinWordLengths — Automatically set the sections for minimum
word lengths.

• SpecifyWordLengths — Specify the word lengths for each section.

2-1027

mfilt.cicinterp

• SpecifyPrecision — Specify precision by providing values for the
word and fraction lengths for each section.

Full Precision

In full precision mode, the word lengths of all sections and the output
are set to Baccum as defined by

where Nsecs is the number of filter sections.

Section fraction lengths and the fraction length of the output are set to
the input fraction length.

Here is the display looks for this mode.

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
InterpolationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision'

Minimum Wordlengths

In minimum word length mode, you control the output word length
explicitly. When the output word length is less than Baccum, roundoff
noise is introduced at the output of the filter. Hogenauer’s bit pruning
theory (refer to [1]) states that one valid design criterion is to make the
word lengths of the different sections of the filter smaller than Baccum
as well, so that the roundoff noise introduced by all sections does not
exceed the roundoff noise introduced at the output.

In this mode, the design calculates the word lengths of each section to
meet the Hogenauer criterion. The algorithm subtracts the number

2-1028

mfilt.cicinterp

of bits computed using eq. 21 in Hogenauer’s paper from Baccum to
determine the word length each section.

To compute the fraction lengths of the different sections, the algorithm
notes that the bits thrown out for this word length criterion are least
significant bits (LSB), therefore, each bit thrown out at a particular
section decrements the frection length of that section by one bit
compared to the input fraction length. Setting the output wordlength
for the filter automatically sets the output fraction length as well.

Here is the display for this mode:

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
InterpolationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'MinWordLengths'

OutputWordLength: 16

Specify Wordlengths

In this mode, the design algorithm discards the LSBs, adjusting the
fraction length so that unrecoverable overflow does not occur, always
producing a reasonable output.

You can specify the word lengths for all sections and the output, but you
cannot control the fraction lengths for those quantities.

To specify the word lengths, you enter a vector of length
2*(NumberOfSections), where each vector element represents the
word length for a section. If you specify a scalar, such as Baccum, the
full-precision output word length, the algorithm expands that scalar to a
vector of the appropriate size, applying the scalar value to each section.

2-1029

mfilt.cicinterp

The CIC design does not check that the specified word lengths are
monotonically decreasing. There are some cases where the word lengths
are not necessarily monotonically decreasing, for example

hcic=mfilt.cicinterp;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;

which are valid CIC filters but the word lengths do not decrease
monotonically across the sections.

Here is the display looks like for the SpecifyWordLengths mode.

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
InterpolationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyWordLengths'

SectionWordLengths: [19 18 18 17]

OutputWordLength: 16

Specify Precision

In this mode, you have full control over the word length and fraction
lengths of all sections and the filter output.

When you elect the SpecifyPrecision mode, you must enter a vector
of length 2*(NumberOfSections) with elements that represent the
word length for each section. When you enter a scalar such as Baccum,
mfilt.cicinterp expands that scalar to a vector of the appropriate size

2-1030

mfilt.cicinterp

and applies the scalar value to each section and the output. The design
does not check that this vector is monotonically decreasing.

Also, you must enter a vector of length 2*(NumberOfSections) with
elements that represent the fraction length for each section as well.
When you enter a scalar such as Baccum, mfilt.cicinterp applies scalar
expansion as done for the word lengths.

Here is the SpecifyPrecision display.

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyPrecision'

SectionWordLengths: [19 18 18 17]
SectionFracLengths: [14 13 13 12]

OutputWordLength: 16
OutputFracLength: 11

About the States of the Filter

In the states property you find the states for both the integrator and
comb portions of the filter. states is a matrix of dimensions m+1-by-n,
with the states apportioned as follows:

• States for the integrator portion of the filter are stored in the first
row of the state matrix.

• States for the comb portion fill the remaining rows in the state
matrix.

2-1031

mfilt.cicinterp

To review the states of a CIC filter, or any filter object states, use int to
assign the states to a variable in MATLAB. As an example, here are the
states for a CIC interpolator hm before and after filtering a data set.

x = fi(ones(1,10),true,16,0); % Fixed-point input data.
hm = mfilt.cicinterp(2,1,2,16,16,16);
sts=int(hm.states)

sts =

0 0
0 0

set(hm,'InputFracLength',0); % Integer input specified.
y=filter(hm,x)

sts=int(hm.states)

sts =

10 45
28 13

Design Considerations

When you design your CIC interpolation filter, remember the following
general points:

• The filter output spectrum has nulls at ω = k *2π/rm radians,k = 1,2,3....

• Aliasing and imaging occur in the vicinity of the nulls.

• n, the number of sections in the filter, determines the passband
attenuation. Increasing n improves the filter ability to reject aliasing
and imaging, but it also increases the droop or rolloff in the filter
passband. Using an appropriate FIR filter in series after the CIC
interpolation filter can help you compensate for the induced droop.

• The DC gain for the filter is a function of the interpolation factor.
Raising the interpolation factor increases the DC gain.

2-1032

mfilt.cicinterp

Examples Demonstrate interpolation by a factor of two, in this case from 22.05
kHz to 44.1 kHz. Note the scaling required to see the results in the stem
plot and to use the full range of the int16 data type.

R = 2; % Interpolation factor.

hm = mfilt.cicinterp(R); % Use default NumberOfSections and

% DifferentialDelay property values.

fs = 22.05e3; % Original sample frequency:22.05 kHz.

n = 0:5119; % 5120 samples, .232 second long signal.

x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz.

y_fi = filter(hm,x); % 5120 samples, still 0.232 seconds.

% Scale the output to overlay stem plots correctly.

x = double(x);

y = double(y_fi);

y = y/max(abs(y));

stem(n(1:22)/fs,x(1:22),'filled'); % Plot original signal sampled

% at 22.05 kHz.

hold on;

stem(n(1:44)/(fs*R),y(4:47),'r'); % Plot interpolated signal

% (44.1 kHz) in red.

xlabel('Time (sec)');ylabel('Signal Value');

As you expect, the plot shows that the interpolated signal matches the
input sine shape, with additional samples between each original sample.

2-1033

mfilt.cicinterp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l v

al
ue

Original Signal
Interpolated Signal

Use the filter visualization tool (FVTool) to plot the response of the
interpolator object. For example, to plot the response of an interpolator
with an interpolation factor of 7, 4 sections, and 1 differential delay,
do something like the following:

hm = mfilt.cicinterp(7,1,4)
fvtool(hm)

Algorithm To show how the CIC interpolation filter is constructed, the following
figure presents a block diagram of the filter structure for a two-section
CIC interpolation filter (n = 2). fs is the high sampling rate, the output
from the interpolation process.

For details about the bits that are removed in the integrator section,
refer to [1] in References.

2-1034

mfilt.cicinterp

When you select MinWordLengths, the filter section word lengths are
automatically set to the minimum number of bits possible in a valid
CIC interpolator. mfilt.cicinterp computes the wordlength for each
section so the roundoff noise introduced by all sections is less than the
roundoff noise introduced by the quantization at the output.

References [1] Hogenauer, E. B., “An Economical Class of Digital Filters for
Decimation and Interpolation,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-29(2): pp. 155-162, 1981

[2] Meyer-Baese, Uwe, “Hogenauer CIC Filters,” in Digital Signal
Processing with Field Programmable Gate Arrays, Springer, 2001, pp.
155-172

[3] harris, fredric j, Multirate Signal Processing for Communication
Systems, Prentice-Hall PTR, 2004 , pp. 343

2-1035

mfilt.farrowsrc

Purpose Sample rate converter with arbitrary conversion factor

Syntax hm = mfilt.farrowsrc(L,M,C)
hm = mfilt.farrowsrc
hm = mfilt.farrowsrc(l,...)

Description hm = mfilt.farrowsrc(L,M,C) returns a filter object that is a natural
extension of dfilt.farrowfd with a time-varying fractional delay. It
provides a economical implementation of a sample rate converter
with an arbitrary conversion factor. This filter works well in the
interpolation case, but may exhibit poor anti-aliasing properties in the
decimation case.

Input Arguments

The following table describes the input arguments for creating hm.

Input
Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. The
default value of l is 3.

m Decimation factor for the filter. m specifies the
amount to decrease the input sampling rate. The
default value for m is 2.

c Coefficients for the filter. When no input arguments
are specified, the default coefficients are [-1 1;
1, 0]

hm = mfilt.farrowsrc constructs the filter using the default values
for l, m, and c.

hm = mfilt.farrowsrc(l,...) constructs the filter using the input
arguments you provide and defaults for the argument you omit.

2-1036

mfilt.farrowsrc

mfilt.farrowsrc Object Properties

Every multirate filter object has properties that govern the way it
behaves when you use it. Note that many of the properties are also
input arguments for creating mfilt.farrowsrc objects. The next table
describes each property for an mfilt.farrowsrc filter object.

Name Values Description

FilterStructure String Reports the type of filter object.
You cannot set this property — it
is always read only and results
from your choice of mfilt object.

Arithmetic String Reports the arithmtetic
precision used by the filter.

Coefficients Vector Vector containing the coefficients
of the FIR lowpass filter

InterpolationFactor Integer Interpolation factor for the
filter. It specifies the amount
to increase the input sampling
rate.

2-1037

mfilt.farrowsrc

Name Values Description

DecimationFactor Integer Decimation factor for the filter.
It specifies the amount to
increase the input sampling
rate.

PersistentMemory false or
true

Determines whether the filter
states are restored to their
starting values for each filtering
operation. The starting values
are the values in place when
you create the filter if you
have not changed the filter
since you constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.

Example Interpolation by a factor of 8. Notice that this object removes the
spectral replicas in the signal after interpolation.

[L,M] = rat(48/44.1);

Hm = mfilt.farrowsrc(L,M); % We use the default filter

Fs = 44.1e3; % Original sampling frequency

n = 0:9407; % 9408 samples, 0.213 seconds long

x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz

y = filter(Hm,x); % 10241 samples, still 0.213 seconds

stem(n(1:45)/Fs,x(1:45)) % Plot original sampled at 44.1kHz

hold on

% Plot fractionally interpolated signal (48kHz) in red

stem((n(2:50)-1)/(Fs*L/M),y(2:50),'r','filled')

xlabel('Time (sec)');ylabel('Signal value')

legend('44.1 kHz sample rate','48kHz sample rate')

The results of the example are shown in the following figure:

2-1038

mfilt.farrowsrc

2-1039

mfilt.fftfirinterp

Purpose Overlap-add FIR polyphase interpolator

Syntax hm = mfilt.fftfirinterp(l,num,bl)
hm = mfilt.fftfirinterp
hm = mfilt.fftfirinterp(l,...)

Description hm = mfilt.fftfirinterp(l,num,bl) returns a discrete-time FIR
filter object that uses the overlap-add method for filtering input data.

The input arguments are optional. To enter any optional value, you
must include all optional values to the left of your desired value.

When you omit one or more input options, the omitted option applies
the default values shown in the table below.

The number of FFT points is given by [bl+ceil(length(num)/l)-1]. It
is to your advantage to choose bl such that the number of FFT points is
a power of two—using powers of two can improve the efficiency of the
FFT and the associated interpolation process.

Input Arguments

The following table describes the input arguments for creating hm.

Input
Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. It
must be an integer. When you do not specify a
value for l it defaults to 2.

2-1040

mfilt.fftfirinterp

Input
Argument Description

num Vector containing the coefficients of the FIR
lowpass filter used for interpolation. When num
is not provided as an input, fftfirinterp uses a
lowpass Nyquist filter with gain equal to l and
cutoff frequency equal to π/l by default.

bl Length of each block of input data used in the
filtering. bl must be an integer. When you omit
input bl, it defaults to 100

hm = mfilt.fftfirinterp constructs the filter using the default
values for l, num, and bl.

hm = mfilt.fftfirinterp(l,...) constructs the filter using the
input arguments you provide and defaults for the argument you omit.

mfilt.fftfirinterp Object Properties

Every multirate filter object has properties that govern the way it
behaves when you use it. Note that many of the properties are also
input arguments for creating mfilt.fftfirinterp objects. The next
table describes each property for an mfilt.fftfirinterp filter object.

Name Values Description

FilterStructure Reports the type of filter object.
You cannot set this property — it
is always read only and results
from your choice of mfilt object.

Numerator Vector containing the coefficients
of the FIR lowpass filter used for
interpolation.

2-1041

mfilt.fftfirinterp

Name Values Description

InterpolationFactor Interpolation factor for the
filter. It specifies the amount
to increase the input sampling
rate. It must be an integer.

BlockLength Length of each block of input
data used in the filtering.

PersistentMemory false or
true

Determines whether the filter
states are restored to their
starting values for each filtering
operation. The starting values
are the values in place when
you create the filter if you
have not changed the filter
since you constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.

States Stored conditions for the
filter, including values for the
interpolator states.

Examples Interpolation by a factor of 8. Notice that this object removes the
spectral replicas in the signal after interpolation.

l = 8; % Interpolation factor

hm = mfilt.fftfirinterp(l); % We use the default filter

n = 8192; % Number of points

hm.blocklength = n; % Set block length to number of points

fs = 44.1e3; % Original sample freq: 44.1 kHz.

n = 0:n-1; % 0.1858 secs of data

x = sin(2*pi*n*22e3/fs); % Original signal, sinusoid at 22 kHz

2-1042

mfilt.fftfirinterp

y = filter(hm,x); % Interpolated sinusoid

xu = l*upsample(x,8); % Upsample to compare--the spectrum

% does not change

[px,f]=periodogram(xu,[],65536,l*fs);% Power spectrum of original

% signal

[py,f]=periodogram(y,[],65536,l*fs); % Power spectrum of

% interpolated signal

plot(f,10*log10(([fs*px,l*fs*py])))

legend('22 kHz sinusoid sampled at 44.1 kHz',...

'22 kHz sinusoid sampled at 352.8 kHz')

xlabel('Frequency (Hz)'); ylabel('Power Spectrum');

To see the results of the example, look at this figure.

0 2 4 6 8 10 12 14 16 18

x 10
4

−60

−50

−40

−30

−20

−10

0

10

20

30

40

Frequency (Hz)

P
ow

er
 S

pe
ct

ru
m

22 KHz sinusoid sampled at 44.1 KHz
22 KHz sinusoid sampled at 352.8 KHz

See Also mfilt.firinterp, mfilt.holdinterp, mfilt.linearinterp,
mfilt.firfracinterp, mfilt.cicinterp

2-1043

mfilt.firdecim

Purpose Direct-form FIR polyphase decimator

Syntax hm = mfilt.firdecim(m)
hm = mfilt.firdecim(m,num)

Description hm = mfilt.firdecim(m) returns a direct-form FIR polyphase
decimator object hm with a decimation factor of m. A lowpass Nyquist
filter of gain 1 and cutoff frequency of π/m is designed by default. This
filter allows some aliasing in the transition band but it very efficient
because the first polyphase component is a pure delay.

hm = mfilt.firdecim(m,num) uses the coefficients specified by num for
the decimation filter. This lets you specify more completely the FIR
filter to use for the decimator.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter

set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hm,'arithmetic','fixed');

Input Arguments

The following table describes the input arguments for creating hm.

2-1044

mfilt.firdecim

Input
Argument Description

m Decimation factor for the filter. m specifies the
amount to reduce the sampling rate of the input
signal. It must be an integer. When you do not
specify a value for m it defaults to 2.

num Vector containing the coefficients of the FIR
lowpass filter used for decimation. When num
is not provided as an input, mfilt.firdecim
constructs a lowpass Nyquist filter with gain of
1 and cutoff frequency equal to π/m by default.
The default length for the Nyquist filter is 24*m.
Therefore, each polyphase filter component has
length 24.

Object
Properties

This section describes the properties for both floating-point filters
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties

Every multirate filter object has properties that govern the way it
behaves when you use it. Note that many of the properties are also
input arguments for creating mfilt.firdecim objects. The next table
describes each property for an mfilt.firdecim filter object.

Name Values Description

Arithmetic Double,
single,
fixed

Defines the arithmetic the
filter uses. Gives you the
options double, single, and
fixed. In short, this property
defines the operation mode for
your filter.

2-1045

mfilt.firdecim

Name Values Description

DecimationFactor Integer Decimation factor for the
filter. m specifies the amount
to reduce the sampling rate of
the input signal. It must be
an integer.

FilterStructure String Reports the type of filter
object. You cannot set this
property — it is always
read only and results from
your choice of mfilt object.
Describes the signal flow for
the filter object.

InputOffset Integers Contains a value derived
from the number of input
samples and the decimation
factor — InputOffset =
mod(length(nx),m) where nx
is the number of input samples
that have been processed so
far and m is the decimation
factor.

Numerator Vector Vector containing the
coefficients of the FIR lowpass
filter used for decimation.

2-1046

mfilt.firdecim

Name Values Description

PersistentMemory false, true Determines whether the filter
states get restored to zeros for
each filtering operation. The
starting values are the values
in place when you create the
filter if you have not changed
the filter since you constructed
it. PersistentMemory set to
false returns filter states
to the default values after
filtering. States that the
filter does not change are
not affected. Setting this to
true allows you to modify the
States, InputOffset, and
PolyphaseAccum properties.

PolyphaseAccum 0 in double,
single, or
fixed for the
different filter
arithmetic
settings.

Differentiates between the
adders in the filter that work
in full precision at all times
(PolyphaseAccum) and the
adders in the filter that the
user controls and that may
introduce quantization effects
when FilterInternals is set
to SpecifyPrecision.

States Double,
single, or
fi matching
the filter
arithmetic
setting.

This property contains the
filter states before, during, and
after filter operations. States
act as filter memory between
filtering runs or sessions.
Double is the default setting
for floating-point filters in
double arithmetic.

2-1047

mfilt.firdecim

Fixed-Point Filter Properties

This table shows the properties associated with the fixed-point
implementation of the filter. You see one or more of these properties
when you set Arithmetic to fixed. Notice that some of the properties
have different default values when they refer fixed point filters. One
example is the property PolyphaseAccum which stores data as doubles
when you use your filter in double-precision mode, but stores a fi object
in fixed-point mode.

Note The table lists all of the properties that a fixed-point filter can
have. Many of the properties listed are dynamic, meaning they exist
only in response to the settings of other properties. To view all of the
characteristics for a filter at any time, use info(hm) where hm is a filter.

For further information about the properties of this filter or any mfilt
object, refer to “Multirate Filter Properties”.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits
[32]

Specifies the fraction length used to interpret
data output by the accumulator. This is a
property of FIR filters.

AccumWordLength Any integer
number of bits
[39]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify other
filter properties to customize your fixed-point
filter.

2-1048

mfilt.firdecim

Name Values Description

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables
you to change the NumFracLength property
value to specify the precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets
the output word and fraction lengths, product
word and fraction lengths, and the accumulator
word and fraction lengths to maintain the best
precision results during filtering. The default
value, FullPrecision, sets automatic word
and fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so you
can set your own word and fraction lengths for
them.

InputFracLength Any positive or
negative integer
number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer
number of bits[16]

Specifies the word length applied to interpret
input data.

OutputFracLength Any positive or
negative integer
number of bits
[32]

Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you set
FilterInternals to SpecifyPrecision.

2-1049

mfilt.firdecim

Name Values Description

OutputWordLength Any integer
number of bits
[39]

Determines the word length used for the output
data. You make this property editable by setting
FilterInternals to SpecifyPrecision.

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to
the largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic.) The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow —
they maintain full precision.

2-1050

mfilt.firdecim

Name Values Description

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix — Round negative numbers up and
positive numbers down to the next allowable
quantized value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow —
they maintain full precision.

2-1051

mfilt.firdecim

Name Values Description

Signed [true], false Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions. Notice that the states use fi objects,
with the associated properties from those
objects. For details, refer to fixed-point objects
in Fixed-Point Toolbox documentation or in
the online Help system. For information about
the ordering of the states, refer to the filter
structure section.

Filter
Structure

To provide decimation, mfilt.firdecim uses the following structure.
At the input you see a commutator that operates counterclockwise,
moving from position 0 to position 2, position 1, and back to position 0
as input samples enter the filter.

The following figure details the signal flow for the direct form FIR filter
implemented by mfilt.firdecim.

2-1052

mfilt.firdecim

Notice the order of the states in the filter flow diagram. States 1 through
9 appear in the diagram above each delay element. State 1 applies to
the first delay element in phase 2. State 2 applies to the first delay
element in phase 1. State 3 applies to the first delay element in phase
0. State 4 applies to the second delay in phase 2, and so on. When you
provide the states for the filter as a vector to the States property, the
above description explains how the filter assigns the states you specify.

In property value form, the states for a filter hm are

hm.states=[1:9];

Examples Convert an input signal from 44.1 kHz to 22.05 kHz using decimation
by a factor of 2. In the figure that appears after the example code, you
see the results of the decimation.

m = 2; % Decimation factor.

hm = mfilt.firdecim(m); % Use the default filter.

fs = 44.1e3; % Original sample freq: 44.1kHz.

n = 0:10239; % 10240 samples, 0.232 second long

% signal.

x = sin(2*pi*1e3/fs*n); % Original signal--sinusoid at 1kHz.

2-1053

mfilt.firdecim

y = filter(hm,x); % 5120 samples, 0.232 seconds.

stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1 kHz.

hold on % Plot decimated signal (22.05 kHz)

% in red.

stem(n(1:22)/(fs/m),y(13:34),'r','filled')

xlabel('Time (sec)');ylabel('Signal Value')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

Original Signal
Decimated Signal

See Also mfilt.firtdecim, mfilt.firfracdecim, mfilt.cicdecim

2-1054

mfilt.firfracdecim

Purpose Direct-form FIR polyphase fractional decimator

Syntax hm = mfilt.firfracdecim(l,m,num)

Description hm = mfilt.firfracdecim(l,m,num) returns a direct-form FIR
polyphase fractional decimator. Input argument l is the interpolation
factor. l must be an integer. When you omit l in the calling syntax, it
defaults to 2. m is the decimation factor. It must be an integer. If not
specified, it defaults to l+1.

num is a vector containing the coefficients of the FIR lowpass filter used
for decimation. If you omit num, a lowpass Nyquist filter of gain l and
cutoff frequency of π/max(l,m) is used by default.

By specifying both a decimation factor and an interpolation factor, you
can decimate your input signal by noninteger amounts. The fractional
decimator first interpolates the input, then decimates to result in an
output signal whose sample rate is l/m of the input rate. By default, the
resulting decimation factor is 2/3 when you do not provide l and m in
the calling syntax. Specify l smaller than m for proper decimation.

Input Arguments

The following table describes the input arguments for creating hm.

Input
Argument Description

l Interpolation factor for the filter. It must be an
integer. When you do not specify a value for l it
defaults to 2.

2-1055

mfilt.firfracdecim

Input
Argument Description

num Vector containing the coefficients of the FIR lowpass
filter used for decimation. When num is not provided
as an input, firfracdecim uses a lowpass Nyquist
filter with gain equal to l and cutoff frequency equal
to π/max(l,m) by default.

m Decimation factor for the filter. m specifies the
amount to reduce the sampling rate of the input
signal. It must be an integer. When you do not
specify a value for m it defaults to l + 1.

mfilt.firfracdecim Object Properties

Every multirate filter object has properties that govern the way it
behaves when you use it. Note that many of the properties are also
input arguments for creating mfilt.firfracdecim objects. The next
table describes each property for an mfilt.firfracdecim filter object.

Name Values Description

FilterStructure String Reports the type of filter object,
such as a decimator or fractional
decimator. You cannot set this
property — it is always read only
and results from your choice of
mfilt object.

Numerator Vector Vector containing the coefficients
of the FIR lowpass filter used for
interpolation.

RateChangeFactors [l,m] Reports the decimation (m) and
interpolation (l) factors for the
filter object. Combining these
factors results in the final rate
change for the signal.

2-1056

mfilt.firfracdecim

Name Values Description

PersistentMemory false or
true

Determines whether the filter
states are restored to their starting
values for each filtering operation.
The starting values are the values
in place when you create the
filter if you have not changed the
filter since you constructed it.
PersistentMemory returns to zero
any state that the filter changes
during processing. States that
the filter does not change are not
affected.

States Matrix Stored conditions for the delays
between each interpolator phase,
the filter states, and the states at
the output of each phase in the
filter.

The number of states is
(lh-1)*m+(l-1)*(lo+mo) where
lh is the length of each subfilter,
and l and m are the interpolation
and decimation factors. lo and
mo, the input and output delays
between each interpolation phase,
are integers from Euclid’s theorem
such that lo*l-mo*m = -1 (refer to
the reference for more details). Use
euclidfactors to get lo and mo for
an mfilt.firfracdecim object

Example To demonstrate firfracdecim, perform a fractional decimation by a
factor of 2/3. This is one way to downsample a 48 kHz signal to 32 kHz,
commonly done in audio processing.

2-1057

mfilt.firfracdecim

l = 2; m = 3; % Interpolation/decimation factors.

hm = mfilt.firfracdecim(l,m); % We use the default

fs = 48e3; % Original sample freq: 48 kHz.

n = 0:10239; % 10240 samples, 0.213 second long

% signal

x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz

y = filter(hm,x); % 9408 samples, still 0.213 seconds

stem(n(1:49)/fs,x(1:49)); hold on; % Plot original signal sampled

% at 48 kHz

stem(n(1:32)/(fs*l/m),y(13:44),'r','filled') % Plot decimated

% signal at 32 kHz

xlabel('Time (sec)');

As shown, the plot clearly demonstrates the reduced sampling frequency
of 32 kHz.

0 0.2 0.4 0.6 0.8 1

x 10
−3

−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

2-1058

mfilt.firfracdecim

See Also mfilt.firsrc, mfilt.firfracinterp, mfilt.firinterp,
mfilt.firdecim

References Fliege, N.J., Multirate Digital Signal Processing, John Wiley & Sons,
Ltd., 1994

2-1059

mfilt.firfracinterp

Purpose Direct-form FIR polyphase fractional interpolator

Syntax hm = mfilt.firfracinterp(l,m,num)

Description hm = mfilt.firfracinterp(l,m,num) returns a direct-form FIR
polyphase fractional interpolator mfilt object. l is the interpolation
factor. It must be an integer. If not specified, l defaults to 3.

m is the decimation factor. Like l, it must be an integer. If you do not
specify m in the calling syntax, it defaults to 1. If you also do not specify
a value for l, m defaults to 2.

num is a vector containing the coefficients of the FIR lowpass filter used
for interpolation. If omitted, a lowpass Nyquist filter of gain l and
cutoff frequency of π/max(l,m) is used by default.

By specifying both a decimation factor and an interpolation factor,
you can interpolate your input signal by noninteger amounts. The
fractional interpolator first interpolates the input, then decimates to
result in an output signal whose sample rate is l/m of the input rate.
For proper interpolation, you specify l to be greater than m. By default,
the resulting interpolation factor is 3/2 when you do not provide l and m
in the calling syntax.

Input Arguments

The following table describes the input arguments for creating hm.

Input
Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. It
must be an integer. When you do not specify a value
for l it defaults to 3.

2-1060

mfilt.firfracinterp

Input
Argument Description

num Vector containing the coefficients of the FIR
lowpass filter used for interpolation. When num is
not provided as an input, firfracinterp uses a
lowpass Nyquist filter with gain equal to l and
cutoff frequency equal to π/max(l,m) by default.

m Decimation factor for the filter. m specifies the
amount to reduce the sampling rate of the input
signal. It must be an integer. When you do not
specify a value for m it defaults to 1. When you do
not specify l as well, m defaults to 2.

mfilt.firfracinterp Object Properties

Every multirate filter object has properties that govern the way it
behaves when you use it. Note that many of the properties are also
input arguments for creating mfilt.firfracinterp objects. The next
table describes each property for an mfilt.firfracinterp filter object.

Name Values Description

FilterStructure Reports the type of filter
object. You cannot set this
property — it is always read
only and results from your
choice of mfilt object.

Numerator Vector containing the
coefficients of the FIR lowpass
filter used for interpolation.

2-1061

mfilt.firfracinterp

Name Values Description

RateChangeFactors [l,m] Reports the decimation (m)
and interpolation (l) factors
for the filter object. Combining
these factors results in the
final rate change for the
signal.

PersistentMemory false or true Determines whether the
filter states are restored
to their starting values for
each filtering operation. The
starting values are the values
in place when you create the
filter if you have not changed
the filter since you constructed
it. PersistentMemory returns
to the default values any state
that the filter changes during
processing. States that the
filter does not change are not
affected.

States Matrix Stored conditions for the
filter, including values for the
interpolator and comb states.

Examples To convert a signal from 32 kHz to 48 kHz requires fractional
interpolation. This example uses the mfilt.firfracinterp object to
upsample an input signal. Setting l = 3 and m = 2 returns the same
mfilt object as the default mfilt.firfracinterp object.

l = 3; m = 2; % Interpolation/decimation factors.

hm = mfilt.firfracinterp(l,m); % We use the default filter

fs = 32e3; % Original sample freq: 32 kHz.

n = 0:6799; % 6800 samples, 0.212 second long signal

x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz

2-1062

mfilt.firfracinterp

y = filter(hm,x); % 10200 samples, still 0.212 seconds

stem(n(1:32)/fs,x(1:32),'filled') % Plot original sampled at

% 32 kHz

hold on;

% Plot fractionally interpolated signal (48 kHz) in red

stem(n(1:48)/(fs*l/m),y(20:67),'r')

xlabel('Time (sec)');ylabel('Signal Value')

The ability to interpolate by fractional amounts lets you raise the
sampling rate from 32 to 48 kHz, something you cannot do with integral
interpolators. Both signals appear in the following figure.

0 0.2 0.4 0.6 0.8 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

See Also mfilt.firsrc, mfilt.firfracdecim, mfilt.firinterp,
mfilt.firdecim

2-1063

mfilt.firinterp

Purpose FIR filter-based interpolator

Syntax hm = mfilt.firinterp(l)
hm = mfilt.firinterp(l,num)

Description hm = mfilt.firinterp(l) returns an FIR-based interpolator object hm
with an interpolation factor of l. A lowpass Nyquist filter of gain l and
cutoff frequency of π/l is the default if you do not include l as an input.

hm = mfilt.firinterp(l,num) uses the coefficients specified by num
for the numerator coefficients of the interpolation filter.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter

set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hm,'arithmetic','fixed');

Input Arguments

The following table describes the input arguments for creating hm.

2-1064

mfilt.firinterp

Input
Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. It must
be an integer. When you do not specify a value for l
it defaults to 2.

num Vector containing the coefficients of the FIR lowpass
filter used for interpolation. When num is not
provided as an input, firinterp uses a lowpass
Nyquist filter with gain equal to l and cutoff
frequency equal to π/l by default. The default
length for the Nyquist filter is 24*l. Therefore, each
polyphase filter component has length 24.

Object
Properties

This section describes the properties for both floating-point filters
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties

Every multirate filter object has properties that govern the way it
behaves when you use it. Note that many of the properties are also
input arguments for creating mfilt.firinterp objects. The next table
describes each property for an mfilt.firinterp filter object.

Name Values Description

Arithmetic Double, single,
fixed

Defines the arithmetic the filter uses.
Gives you the options double, single,
and fixed. In short, this property defines
the operation mode for your filter.

FilterStructure String Reports the type of filter object. You
cannot set this property — it is always
read only and results from your choice of
mfilt object. Describes the signal flow
for the filter object.

2-1065

mfilt.firinterp

Name Values Description

InterpolationFactor Integer Interpolation factor for the filter. l
specifies the amount to increase the
sampling rate of the input signal. It must
be an integer.

Numerator Vector Vector containing the coefficients of the
FIR lowpass filter used for decimation.

PersistentMemory [false], true Determines whether the filter states
get restored to zeros for each filtering
operation. The starting values are the
values in place when you create the filter
if you have not changed the filter since
you constructed it. PersistentMemory
set to false returns filter states to the
default values after filtering. States that
the filter does not change are not affected.
Setting this to true allows you to modify
the States property.

States Double, single,
matching the filter
arithmetic setting.

Contains the filter states before, during,
and after filter operations. States act as
filter memory between filtering runs or
sessions.

Fixed-Point Filter Properties

This table shows the properties associated with the fixed-point
implementation of the mfilt.firinterp filter.

2-1066

mfilt.firinterp

Note The table lists all of the properties that a fixed-point filter can
have. Many of the properties listed are dynamic, meaning they exist
only in response to the settings of other properties. To view all of the
characteristics for a filter at any time, use

info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt
object, refer to “Multirate Filter Properties”.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits. [32]

Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters and
lattice filters. IIR filters have two similar
properties — DenAccumFracLength and
NumAccumFracLength — that let you
set the precision for numerator and
denominator operations separately.

AccumWordLength Any integer number
of bits[39]

Sets the word length used to store data in
the accumulator.

Arithmetic fixed for fixed-point
filters

Setting this to fixed allows you to modify
other filter properties to customize your
fixed-point filter.

2-1067

mfilt.firinterp

Name Values Description

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength property value to specify
the precision used.

CoeffWordLength Any integer number
of bits [16]

Specifies the word length to apply to filter
coefficients.

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically
sets the output word and fraction lengths,
product word and fraction lengths, and
the accumulator word and fraction lengths
to maintain the best precision results
during filtering. The default value,
FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available
so you can set your own word and fraction
lengths for them.

InputFracLength Any positive or
negative integer
number of bits [15]

Specifies the fraction length the filter uses
to interpret input data.

InputWordLength Any integer number
of bits [16]

Specifies the word length applied to
interpret input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret
the numerator coefficients.

2-1068

mfilt.firinterp

Name Values Description

OutputFracLength Any positive or
negative integer
number of bits [32]

Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you set
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer number
of bits [39]

Determines the word length used for the
output data. You make this property
editable by setting FilterInternals to
SpecifyPrecision.

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic.
Choose from either saturate (limit
the output to the largest positive or
negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular
arithmetic.) The choice you make
affects only the accumulator and output
arithmetic. Coefficient and input
arithmetic always saturates. Finally,
products never overflow — they maintain
full precision.

2-1069

mfilt.firinterp

Name Values Description

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize
numeric values when the values lie
between representable values for the data
format (word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are
exactly halfway between the two nearest
allowable quantized values are rounded
up only if the least significant bit (after
rounding) would be set to 1.

• fix — Round negative numbers up
and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next
allowable quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest
allowable quantized values are rounded
up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow
— they maintain full precision.

2-1070

mfilt.firinterp

Name Values Description

Signed [true], false Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object to match
the filter arithmetic
setting.

Contains the filter states before, during,
and after filter operations. States act as
filter memory between filtering runs or
sessions. Notice that the states use fi
objects, with the associated properties
from those objects. For details, refer to
fixed-point objects in Fixed-Point Toolbox
documentation or in the online Help
system.

Filter
Structure

To provide interpolation, mfilt.firinterp uses the following structure.

The following figure details the signal flow for the direct form FIR filter
implemented by mfilt.firinterp. In the figure, the delay line updates
happen at the lower input rate. The remainder of the filter — the sums
and coefficients — operate at the higher output rate.

2-1071

mfilt.firinterp

Examples This example uses mfilt.firinterp to double the sample rate of
a 22.05 kHz input signal. The output signal ends up at 44.1 kHz.
Although l is set explicitly to 2, this represents the default interpolation
value for mfilt.firinterp objects.

l = 2; % Interpolation factor.

hm = mfilt.firinterp(l); % Use the default filter.

fs = 22.05e3; % Original sample freq: 22.05 kHz.

n = 0:5119; % 5120 samples, 0.232s long signal.

x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz.

y = filter(hm,x); % 10240 samples, still 0.232s.

stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at

% 22.05 kHz.

hold on;

% Plot interpolated signal (44.1 kHz) in red

stem(n(1:44)/(fs*l),y(25:68),'r')

xlabel('Time (sec)');ylabel('Signal Value')

2-1072

mfilt.firinterp

With interpolation by 2, the resulting signal perfectly matches the
original, but with twice as many samples — one between each original
sample, as shown in the following figure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1

−0.5

0

0.5

1

1.5

Time (sec)

S
ig

na
l V

al
ue

Original Signal
Interpolated Signal

See Also mfilt.holdinterp, mfilt.linearinterp, mfilt.fftfirinterp,
mfilt.firfracinterp, mfilt.cicinterp

2-1073

mfilt.firsrc

Purpose Direct-form FIR polyphase sample rate converter

Syntax hm = mfilt.firsrc(l,m,num)

Description hm = mfilt.firsrc(l,m,num) returns a direct-form FIR polyphase
sample rate converter. l specifies the interpolation factor. It must be an
integer and when omitted in the calling syntax, it defaults to 2.

m is the decimation factor. It must be an integer. If not specified, m
defaults to 1. If l is also not specified, m defaults to 3 and the overall
rate change factor is 2/3.

You specify the coefficients of the FIR lowpass filter used for sample
rate conversion in num. If omitted, a lowpass Nyquist filter with gain l
and cutoff frequency of π/max(l,m) is the default.

Combining an interpolation factor and a decimation factor lets you use
mfilt.firsrc to perform fractional interpolation or decimation on an
input signal. Using an mfilt.firsrc object applies a rate change factor
defined by l/m to the input signal. For proper rate changing to occur,
l and m must be relatively prime — meaning the ratio l/m cannot be
reduced to a ratio of smaller integers.

When you are doing sample-rate conversion with large values of
l or m, such as l or m greater than 20, using the mfilt.firsrc
structure is the most effective approach. Other possible fractional
rate change structures, such as mfilt.firfracinterp (where l > m)
or mfilt.firfracdecim (where l < m) may have prohibitively large
memory requirements for applications that require large rate changes.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter

set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hm,'arithmetic','fixed');

2-1074

mfilt.firsrc

Input Arguments

The following table describes the input arguments for creating hm.

Input
Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. It must
be an integer. When you do not specify a value for l,
it defaults to 2.

num Vector containing the coefficients of the FIR
lowpass filter used for interpolation. When num
is not provided as an input, mfilt.firsrc uses
a lowpass Nyquist filter with gain equal to l and
cutoff frequency equal to π/max(l,m) by default.
The default length for the Nyquist filter is 24*m.
Therefore, each polyphase filter component has
length 24.

m Decimation factor for the filter. m specifies the
amount to reduce the sampling rate of the input
signal. It must be an integer. When you do not
specify a value for m, it defaults to 1. When l is
unspecified as well, m defaults to 3.

Object
Properties

This section describes the properties for both floating-point filters
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties

Every multirate filter object has properties that govern the way it
behaves when you use it. Note that many of the properties are also
input arguments for creating mfilt.firsrc objects. The next table
describes each property for an mfilt.firsrc filter object.

2-1075

mfilt.firsrc

Name Values Description

Arithmetic [Double], single,
fixed

Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operation
mode for your filter.

FilterStructure String Reports the type of filter object. You cannot
set this property — it is always read only
and results from your choice of mfilt object.
Describes the signal flow for the filter object.

InputOffset Integers Contains a value derived from the number
of input samples and the decimation factor
— InputOffset = mod(length(nx),m)
where nx is the number of input samples
and m is the decimation factor.

Numerator Vector Vector containing the coefficients of the FIR
lowpass filter used for decimation.

PersistentMemory false, true Determines whether the filter states
get restored to zeros for each filtering
operation. The starting values are the
values in place when you create the filter
if you have not changed the filter since
you constructed it. PersistentMemory
set to false returns filter states to the
default values after filtering. States that
the filter does not change are not affected.
Setting this to true allows you to modify the
States, InputOffset, and PolyphaseAccum
properties.

2-1076

mfilt.firsrc

Name Values Description

RateChangeFactors Positive integers.
[2 3]

Specifies the interpolation and decimation
factors [l m] (the rate change factors)
for changing the input sample rate by
nonintegral amounts.

States Double, single,
matching the filter
arithmetic setting.

Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.

Fixed-Point Filter Properties

This table shows the properties associated with the fixed-point
implementation of the mfilt.firsrc filter.

Note The table lists all of the properties that a fixed-point filter can
have. Many of the properties listed are dynamic, meaning they exist
only in response to the settings of other properties. To view all of the
characteristics for a filter at any time, use

info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt
object, refer to “Multirate Filter Properties”.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits.
[32]

Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters.

2-1077

mfilt.firsrc

Name Values Description

AccumWordLength Any integer
number of bits
[39]

Sets the word length used to store data in
the accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify
other filter properties to customize your
fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength property value to specify the
precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically
sets the output word and fraction lengths,
product word and fraction lengths, and
the accumulator word and fraction lengths
to maintain the best precision results
during filtering. The default value,
FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available
so you can set your own word and fraction
lengths for them.

InputFracLength Any positive or
negative integer
number of bits [15]

Specifies the fraction length the filter uses
to interpret input data.

2-1078

mfilt.firsrc

Name Values Description

InputWordLength Any integer
number of bits
[16]

Specifies the word length applied to interpret
input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits [32]

Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you set
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[39]

Determines the word length used for the
output data. You make this property
editable by setting FilterInternals to
SpecifyPrecision.

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic.) The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow
— they maintain full precision.

RateChangeFactors Positive integers
[2 3]

Specifies the interpolation and decimation
factors [l m] (the rate change factors)
for changing the input sample rate by
nonintegral amounts.

2-1079

mfilt.firsrc

Name Values Description

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent — Round up to the next
allowable quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are
exactly halfway between the two nearest
allowable quantized values are rounded
up only if the least significant bit (after
rounding) would be set to 1.

• fix — Round negative numbers up
and positive numbers down to the next
allowable quantized value.

• floor — Round down to the next
allowable quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest
allowable quantized values are rounded
up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow —
they maintain full precision.

2-1080

mfilt.firsrc

Name Values Description

Signed [true], false Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
Notice that the states use fi objects, with
the associated properties from those objects.
For details, refer to fixed-point objects in
Fixed-Point Toolbox documentation or in the
online Help system. For information about
the ordering of the states, refer to the filter
structure section.

Examples This is an example of a common audio rate change process — changing
the sample rate of a high end audio (48 kHz) signal to the compact disc
sample rate (44.1 kHz). This conversion requires a rate change factor of
0.91875, or l = 147 and m = 160.

l = 147; m = 160; % Interpolation/decimation factors.

hm = mfilt.firsrc(l,m); % Use the default FIR filter.

fs = 48e3; % Original sample freq: 48 kHz.

n = 0:10239; % 10240 samples, 0.213 seconds long.

x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz.

y = filter(hm,x); % 9408 samples, still 0.213 seconds.

stem(n(1:49)/fs,x(1:49)) % Plot original sampled at 48 kHz.

hold on

% Plot fractionally decimated signal (44.1 kHz) in red

stem(n(1:45)/(fs*l/m),y(13:57),'r','filled')

xlabel('Time (sec)');ylabel('Signal Value')

Fractional decimation provides you the flexibility to pick and choose the
sample rates you want by carefully selecting l and m, the interpolation
and decimation factors, that result in the final fractional decimation.

2-1081

mfilt.firsrc

The following figure shows the signal after applying the rate change
filter hm to the original signal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

Original Signal
Signal After Rate Change

See Also mfilt.firfracinterp, mfilt.firfracdecim, mfilt.firinterp,
mfilt.firdecim

2-1082

mfilt.firtdecim

Purpose Direct-form transposed FIR filter

Syntax hm = mfilt.firtdecim(m)
hm = mfilt.firtdecim(m,num)

Description hm = mfilt.firtdecim(m) returns a polyphase decimator mfilt object
hm based on a direct-form transposed FIR structure with a decimation
factor of m. A lowpass Nyquist filter of gain 1 and cutoff frequency of
π/m is the default.

hm = mfilt.firtdecim(m,num) uses the coefficients specified by num
for the decimation filter. num is a vector containing the coefficients of the
transposed FIR lowpass filter used for decimation. If omitted, a lowpass
Nyquist filter with gain of 1 and cutoff frequency of π/m is the default.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter

set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hm,'arithmetic','fixed');

Input Arguments

The following table describes the input arguments for creating hm.

2-1083

mfilt.firtdecim

Input
Argument Description

num Vector containing the coefficients of the FIR
lowpass filter used for interpolation. When num is
not provided as an input, firtdecim uses a lowpass
Nyquist filter with gain equal to l and cutoff
frequency equal to π/m by default. The default
length for the Nyquist filter is 24*m. Therefore,
each polyphase filter component has length 24.

m Decimation factor for the filter. m specifies the
amount to reduce the sampling rate of the input
signal. It must be an integer. When you do not
specify a value for m it defaults to 2.

Object
Properties

This section describes the properties for both floating-point filters
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties

Every multirate filter object has properties that govern the way it
behaves when you use it. Note that many of the properties are also
input arguments for creating mfilt.firtdecim objects. The next table
describes each property for an mfilt.firtdecim filter object.

Name Values Description

Arithmetic Double, single, fixed Specifies the arithmetic the filter uses to
process data while filtering.

DecimationFactor Integer Decimation factor for the filter. m specifies
the amount to reduce the sampling rate of
the input signal. It must be an integer.

2-1084

mfilt.firtdecim

Name Values Description

FilterStructure String Reports the type of filter object. You
cannot set this property — it is always
read only and results from your choice of
mfilt object. Also describes the signal
flow for the filter object.

InputOffset Integers Contains a value derived from the number
of input samples and the decimation factor
— InputOffset = mod(length(nx),m)
where nx is the number of input samples
that have been processed so far and m is
the decimation factor.

Numerator Vector Vector containing the coefficients of the
FIR lowpass filter used for decimation.

PersistentMemory [false], true Determines whether the filter states
get restored to zeros for each filtering
operation. The starting values are the
values in place when you create the filter
if you have not changed the filter since
you constructed it. PersistentMemory
set to false returns filter states to the
default values after filtering. States
that the filter does not change are not
affected. Setting this to true allows you
to modify the States, InputOffset, and
PolyphaseAccum properties.

2-1085

mfilt.firtdecim

Name Values Description

PolyphaseAccum Double, single [0] The idea behind having both
PolyphaseAccum and Accum is to
differentiate between the adders in
the filter that work in full precision at
all times (PolyphaseAccum) from the
adders in the filter that the user controls
and that may introduce quantization
effects when FilterInternals is set to
SpecifyPrecision.

States Double, single
matching the filter
arithmetic setting.

Contains the filter states before, during,
and after filter operations. States act as
filter memory between filtering runs or
sessions.

Fixed-Point Filter Properties

This table shows the properties associated with the fixed-point
implementation of the mfilt.firtdecim filter.

Note The table lists all of the properties that a fixed-point filter can
have. Many of the properties listed are dynamic, meaning they exist
only in response to the settings of other properties. To view all of the
characteristics for a filter at any time, use

info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt
object, refer to “Multirate Filter Properties”.

2-1086

mfilt.firtdecim

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits.
[32]

Specifies the fraction length used to interpret
data output by the accumulator. This is a
property of FIR filters and lattice filters.
IIR filters have two similar properties —
DenAccumFracLength and NumAccumFracLength
— that let you set the precision for numerator
and denominator operations separately.

AccumWordLength Any integer
number of bits
[39]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for
fixed-point
filters

Setting this to fixed allows you to modify other
filter properties to customize your fixed-point
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables you
to change the NumFracLength property value to
specify the precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

2-1087

mfilt.firtdecim

Name Values Description

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets
the output word and fraction lengths, product
word and fraction lengths, and the accumulator
word and fraction lengths to maintain the
best precision results during filtering. The
default value, FullPrecision, sets automatic
word and fraction length determination by the
filter. SpecifyPrecision makes the output and
accumulator-related properties available so you
can set your own word and fraction lengths for
them.

InputFracLength Any positive or
negative integer
number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer
number of bits
[16]

Specifies the word length applied to interpret
input data.

NumFracLength Any positive or
negative integer
number of bits
[14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits
[32]

Determines how the filter interprets the
filter output data. You can change the
value of OutputFracLength when you set
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[39]

Determines the word length used for the output
data. You make this property editable by setting
FilterInternals to SpecifyPrecision.

2-1088

mfilt.firtdecim

Name Values Description

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to
the largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic.) The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow —
they maintain full precision.

PolyphaseAccum fi object with
zeros to start

Differentiates between the adders in the
filter that work in full precision at all times
(PolyphaseAccum) and the adders in the filter
that the user controls and that may introduce
quantization effects when FilterInternals is
set to SpecifyPrecision.

2-1089

mfilt.firtdecim

Name Values Description

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent — Round up to the next allowable
quantized value.

• ceil — Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix — Round negative numbers up and
positive numbers down to the next allowable
quantized value.

• floor — Round down to the next allowable
quantized value.

• round — Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow —
they maintain full precision.

2-1090

mfilt.firtdecim

Name Values Description

Signed [true], false Specifies whether the filter uses signed
or unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
Notice that the states use fi objects, with the
associated properties from those objects. For
details, refer to fixed-point objects in Fixed-Point
Toolbox documentation or in the online Help
system. For information about the ordering of
the states, refer to the filter structure section.

Filter
Structure

To provide sample rate changes, mfilt.firtdecim uses the following
structure. At the input you see a commutator that operates
counterclockwise, moving from position 0 to position 2, position 1, and
back to position 0 as input samples enter the filter. To keep track of
the position of the commutator, the mfilt object uses the property
InputOffset which reports the current position of the commutator
in the filter.

The following figure details the signal flow for the direct form FIR filter
implemented by mfilt.firtdecim.

2-1091

mfilt.firtdecim

Notice the order of the states in the filter flow diagram. States 1
through 3 appear in the following diagram at each delay element. State
1 applies to the third delay element in phase 2. State 2 applies to the
second delay element in phase 2. State 3 applies to the first delay
element in phase 2. When you provide the states for the filter as a
vector to the States property, the above description explains how the
filter assigns the states you specify.

In property value form, the states for a filter hm are

hm.states=[1:3];

Examples Demonstrate decimating an input signal by a factor of 2, in this case
converting from 44.1 kHz down to 22.05 kHz. In the figure shown
following the code, you see the results of decimating the signal.

m = 2; % Decimation factor.

hm = mfilt.firtdecim(m); % Use the default filter coeffs.

fs = 44.1e3; % Original sample freq: 44.1 kHz.

n = 0:10239; % 10240 samples, 0.232 second long signal

x = sin(2*pi*1e3/fs*n); % Original signal--sinusoid at 1 kHz.

y = filter(hm,x); % 5120 samples, 0.232 seconds.

2-1092

mfilt.firtdecim

stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1 kHz.

hold on % Plot decimated signal (22.05 kHz) in red

stem(n(1:22)/(fs/m),y(13:34),'r','filled')

xlabel('Time (sec)');ylabel('Signal Value')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

Original Signal
Interpolated Signal

See Also mfilt.firdecim, mfilt.firfracdecim, mfilt.cicdecim

2-1093

mfilt.holdinterp

Purpose FIR hold interpolator

Syntax hm = mfilt.holdinterp(l)

Description hm = mfilt.holdinterp(l) returns the object hm that represents
a hold interpolator with the interpolation factor l. To work, l must
be an integer. When you do not include l in the calling syntax, it
defaults to 2. To perform interpolation by noninteger amounts, use
one of the fractional interpolator objects, such as mfilt.firsrc or
mfilt.firfracinterp.

When you use this hold interpolator, each sample added to the input
signal between existing samples has the value of the most recent sample
from the original signal. Thus you see something like a staircase profile
where the interpolated samples form a plateau between the previous
and next original samples. The example demonstrates this profile
clearly. Compare this to the interpolation process for other interpolators
in the toolbox, such as mfilt.linearinterp.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter

set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hm,'arithmetic','fixed');

Input Arguments

The following table describes the input arguments for creating hm.

2-1094

mfilt.holdinterp

Input
Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. It
must be an integer. When you do not specify a
value for l it defaults to 2.

Object
Properties

This section describes the properties for both floating-point filters
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties

Every multirate filter object has properties that govern the way it
behaves when you use it. Note that many of the properties are also
input arguments for creating mfilt.holdinterp objects. The next table
describes each property for an mfilt.interp filter object.

Name Values Description

Arithmetic Double, single,
fixed

Specifies the arithmetic
the filter uses to process
data while filtering.

FilterStructure String Reports the type of filter
object. You cannot set this
property — it is always
read only and results
from your choice of mfilt
object.

Interpolation-
Factor

Integer Interpolation factor for
the filter. l specifies the
amount to increase the
input sampling rate. It
must be an integer.

2-1095

mfilt.holdinterp

Name Values Description

PersistentMemory ’false’ or ’true’ Determines whether the
filter states are restored
to zero for each filtering
operation.

States Double or single
array

Filter states. states
defaults to a vector of
zeros that has length
equal to nstates (hm).
Always available, but
visible in the display only
when PersistentMemory
is true.

Fixed-Point Filter Properties

This table shows the properties associated with the fixed-point
implementation of the mfilt.holdinterp filter.

Note The table lists all of the properties that a fixed-point filter can
have. Many of the properties listed are dynamic, meaning they exist
only in response to the settings of other properties. To view all of the
characteristics for a filter at any time, use

info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt
object, refer to “Multirate Filter Properties”.

2-1096

mfilt.holdinterp

Name Values Description

Arithmetic Double,
single, fixed

Specifies the arithmetic the
filter uses to process data
while filtering.

FilterStructure String Reports the type of filter
object. You cannot set this
property — it is always read
only and results from your
choice of mfilt object.

InputFracLength Any positive
or negative
integer
number of bits
[15]

Specifies the fraction length
the filter uses to interpret
input data.

InputWordLength Any integer
number of bits
[16]

Specifies the word length
applied to interpret input
data.

Interpolation-
Factor

Integer Interpolation factor for
the filter. l specifies the
amount to increase the input
sampling rate. It must be an
integer.

2-1097

mfilt.holdinterp

Name Values Description

PersistentMemory 'false' or
'true'

Determine whether the filter
states get restored to zero for
each filtering operation

States fi object Contains the filter states
before, during, and after
filter operations. For hold
interpolators, the states
are always empty — hold
interpolators do not have
states. Notice that the
states use fi objects, with
the associated properties
from those objects. For
details, refer to fixed-point
objects in Fixed-Point Toolbox
documentation or in the
online Help system.

Filter
Structure

Hold interpolators do not have structures or filter coefficients.

Examples To see the effects of hold-based interpolation, interpolate an input sine
wave from 22.05 to 44.1 kHz. Note that each added sample retains the
value of the most recent original sample.

l = 2; % Interpolation factor

hm = mfilt.holdinterp(l);

fs = 22.05e3; % Original sample freq: 22.05 kHz.

n = 0:5119; % 5120 samples, 0.232 second long signal

x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz

y = filter(hm,x); % 10240 samples, still 0.232 seconds

stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at

% 22.05 kHz

2-1098

mfilt.holdinterp

hold on % Plot interpolated signal (44.1 kHz)

in red

stem(n(1:44)/(fs*l),y(1:44),'r')

xlabel('Time (sec)');ylabel('Signal Value')

The following figure shows clearly the step nature of the signal
that comes from interpolating the signal using the hold algorithm
approach. Compare the output to the linear interpolation used in
mfilt.linearinterp.

0 0.2 0.4 0.6 0.8 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

See Also mfilt.linearinterp, mfilt.firinterp, mfilt.firfracinterp,
mfilt.cicinterp

2-1099

mfilt.iirdecim

Purpose IIR decimator

Syntax hm = mfilt.iirdecim(c1,c2,...)

Description hm = mfilt.iirdecim(c1,c2,...) constructs an IIR decimator filter
given the coefficients specified in the cell arrays c1, c2, and so on. The
resulting IIR decimator is a polyphase IIR filter where each phase is a
cascade allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade
of allpass sections. Each element in one cell array is one section.
For more information about the contents of each cell array, refer to
dfilt.cascadeallpass. The contents of the cell arrays are the same
for both filter constructors and mfilt.iirdecim interprets them same
way as mfilt.cascadeallpass.

The following exception applies to interpreting the contents of a cell
array — if one of the cell arrays ci contains only one vector, and that
vector comprises a series of 0s and one element equal to 1, that cell
array represents a dfilt.delay section with latency equal to the
number of zeros, rather than a dfilt.cascadeallpass section. This
exception case occurs with quasi-linear phase IIR decimators.

Usually you do not construct IIR decimators explicitly. Instead, you
obtain an IIR decimator filter as a result of designing a halfband
decimator. The first example in the following section illustrates this
case.

Examples Design an elliptic halfband decimator with a decimation factor of 2.
Notice that the example specifies the optional sampling frequency
argument.

tw = 100; % Transition width of filter.
ast = 80; % Stopband attenuation of filter.
fs = 2000; % Sampling frequency of signal to filter.
m = 2; % Decimation factor.
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

2-1100

mfilt.iirdecim

d contains the specifications for a decimator defined by tw, ast, m,
and fs.

Use the specification object d to perform an actual filter design. hm is
an mfilt.iirdecim filter object.

hm = design(d,'ellip','filterstructure','iirdecim');
% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

Designing a linear phase decimator is similar to the previous example.
In this case, design a halfband linear phase decimator with decimation
factor of 2.

tw = 100; % Transition width of filter.
ast = 60; % Stopband attenuation of filter.
fs = 2000; % Sampling frequency of signal to filter.
m = 2; % Decimation factor.

Create a specification object for the decimator.

d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

Finally, design the actual filter hm. As designed, hm is an
mfilt.iirdecim filter object.

hm = design(d,'iirlinphase','filterstructure','iirdecim');
% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

The filter implementation appears in this model, generated by
realizemdl and Simulink.

Given the design specifications shown here

hm =

FilterStructure: 'IIR Polyphase Decimator'

Polyphase: Phase1: Section1: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

2-1101

mfilt.iirdecim

Phase2: Section1: [1.14740498857167 0.409481636102326]

Section2: [0.751016281415127 0.36048597074495]

Section3: [0.272921271612044 0.343931116911137]

Section4: [-0.244601181956782 0.33691092991289]

Section5: [-0.711317191438094 0.333590883744604]

Section6: [-1.03562723857273 0.332039064718955]

Section7: 0.893704991634848

Section8: -0.575824830892574

DecimationFactor: 2

PersistentMemory: false

the first phase is a delay section with 0s and a 1 for coefficients and the
second phase is a linear phase decimator, shown in the next models.

Phase 1 model

2-1102

mfilt.iirdecim

Phase 2 model

2-1103

mfilt.iirdecim

Overall model

See Also dfilt.cascadeallpass, mfilt, mfilt.iirinterp, mfilt.iirwdfdecim

2-1104

mfilt.iirinterp

Purpose IIR interpolator

Syntax hm = mfilt.iirinterp(c1,c2,...)

Description hm = mfilt.iirinterp(c1,c2,...) constructs an IIR interpolator
filter given the coefficients specified in the cell arrays C1, C2, etc.

The IIR interpolator is a polyphase IIR filter where each phase is a
cascade allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade
of allpass sections. Each element in one cell array is one section.
For more information about the contents of each cell array, refer to
dfilt.cascadeallpass. The contents of the cell arrays are the same
for both filter constructors and mfilt.iirdecim interprets them same
way as mfilt.cascadeallpass.

The following exception applies to interpreting the contents of a cell
array—if one of the cell arrays ci contains only one vector, and that
vector comprises a series of 0s and a unique element equal to 1, that
cell array represents a dfilt.delay section with latency equal to the
number of zeros, rather than a dfilt.cascadeallpass section. This
exception case occurs with quasi-linear phase IIR interpolators.

Usually you do not construct IIR interpolators explicitly. Instead, you
obtain an IIR interpolator filter as a result of designing a halfband
interpolator. The first example in the following section illustrates this
case.

Examples Design an elliptic halfband interpolator with a interpolation factor of 2.

tw = 100; % Transition width of filter.
ast = 80; % Stopband attenuation of filter.
fs = 2000; % Sampling frequency of filter.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

2-1105

mfilt.iirinterp

Specification object d stores the interpolator design specifics. With the
details in d, design the filter, returning hm, an mfilt.iirinterp object.
Use hm to realize the filter if you have Simulink installed.

hm = design(d,'ellip','filterstructure','iirinterp');
% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

Designing a linear phase halfband interpolator follows the same
pattern.

tw = 100; % Transition width of filter.
ast= 60; % Stopband attenuation of filter.
fs = 2000; % Sampling frequency of filter.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

fdesign.interpolator returns a specification object that stores the
design features for an interpolator.

Now perform the actual design that results in an mfilt.iirinterp
filter, hm.

hm = design(d,'iirlinphase','filterstructure','iirinterp');

% Note that realizemdl requires Simulink

realizemdl(hm) % Build model of the filter.

The toolbox creates a Simulink model for hm, shown here. Phase1,
Phase2, and InterpCommutator are all subsystem blocks.

2-1106

mfilt.iirinterp

See Also dfilt.cascadeallpass, mfilt, mfilt.iirdecim, mfilt.iirwdfinterp

2-1107

mfilt.iirwdfdecim

Purpose IIR wave digital filter decimator

Syntax hm = mfilt.iirwdfdecim(c1,c2,...)

Description hm = mfilt.iirwdfdecim(c1,c2,...) constructs an IIR wave digital
decimator given the coefficients specified in the cell arrays c1, c2, and so
on. The IIR decimator hm is a polyphase IIR filter where each phase is a
cascade wave digital allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade
of allpass sections. Each element in one cell array is one section.
For more information about the contents of each cell array, refer to
dfilt.cascadewdfallpass. The contents of the cell arrays are the
same for both filter constructors and mfilt.iirwdfdecim interprets
them same way as mfilt.cascadewdfallpass.

The following exception applies to interpreting the contents of a cell
array — if one of the cell arrays ci contains only one vector, and that
vector comprises a series of 0s and one element equal to 1, that cell
array represents a dfilt.delay section with latency equal to the
number of zeros, rather than a dfilt.cascadewdfallpass section. This
exception occurs with quasi-linear phase IIR decimators.

Usually you do not construct IIR wave digital filter decimators explicitly.
Instead, you obtain an IIR wave digital filter decimator as a result of
designing a halfband decimator. The first example in the following
section illustrates this case.

Examples Design an elliptic halfband decimator with a decimation factor equal
to 2. Both examples use the iirwdfdecim filter structure (an input
argument to the design method) to design the final decimator.

The first portion of this example generates a filter specification object d
that stores the specifications for the decimator.

tw = 100; % Transition width of filter to design, 100 Hz.
ast = 80; % Stopband attenuation of filter 80 dB.
fs = 2000; % Sampling frequency of the input signal.
m = 2; % Decimation factor.

2-1108

mfilt.iirwdfdecim

d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

Now perform the actual design using d. Filter object hm is an
mfilt.iirwdfdecim filter.

Hm = design(d,'ellip','FilterStructure','iirwdfdecim');
% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

Design a linear phase halfband decimator for decimating a signal by a
factor of 2.

tw = 100; % Transition width of filter, 100 Hz.
ast = 60; % Filter stopband attenuation = 80 dB
fs = 2000; % Input signal sampling frequency.
m = 2; % Decimation factor.
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

Use d to design the final filter hm, an mfilt.iirwdfdecim object.

hm = design(d,'iirlinphase','filterstructure',...
'iirwdfdecim');
% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

2-1109

mfilt.iirwdfdecim

The models that realizemdl returns for each example appear below. At
this level, the realizations of the filters are identical. The differences
appear in the subsystem blocks Phase1 and Phase2.

2-1110

mfilt.iirwdfdecim

This is the Phase1 subsystem from the halfband model.

2-1111

mfilt.iirwdfdecim

Phase1 subsystem from the linear phase model is less revealing—an
allpass filter.

See Also dfilt.cascadewdfallpass, mfilt, mfilt.iirdecim,
mfilt.iirwdfinterp

2-1112

mfilt.iirwdfinterp

Purpose IIR wave digital filter interpolator

Syntax hm = mfilt.iirwdfinterp(c1,c2,...)

Description hm = mfilt.iirwdfinterp(c1,c2,...) constructs an IIR wave digital
interpolator given the coefficients specified in the cell arrays c1, c2,
and so on. The IIR interpolator hm is a polyphase IIR filter where each
phase is a cascade wave digital allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade
of allpass sections. Each element in one cell array is one section.
For more information about the contents of each cell array, refer to
dfilt.cascadewdfallpass. The contents of the cell arrays are the
same for both filter constructors and mfilt.iirwdfinterp interprets
them same way as mfilt.cascadewdfallpass.

The following exception applies to interpreting the contents of a cell
array — if one of the cell arrays ci contains only one vector, and that
vector comprises a series of 0s and one element equal to 1, that cell
array represents a dfilt.delay section with latency equal to the
number of zeros, rather than a dfilt.cascadewdfallpass section. This
exception occurs with quasi-linear phase IIR interpolators.

Usually you do not construct IIR wave digital filter interpolators
explicitly. Rather, you obtain an IIR wave digital interpolator as a result
of designing a halfband interpolator. The first example in the following
section illustrates this case.

Examples Design an elliptic halfband interpolator with interpolation factor equal
to 2. At the end of the design process, hm is an IIR wave digital filter
interpolator.

tw = 100; % Transition width of filter, 100 Hz.
ast = 80; % Stopband attenuation of filter, 80 dB.
fs = 2000; % Sampling frequency after interpolation.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

2-1113

mfilt.iirwdfinterp

The specification object d stores the interpolator design requirements.
Now use d to design the actual filter hm.

hm = design(d,'ellip','filterstructure','iirwdfinterp');

If you have Simulink installed, you can realize your filter as a model
built from blocks in Signal Processing Blockset.

% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

For variety, design a linear phase halfband interpolator with an
interpolation factor of 2.

tw = 100; % Transition width of filter, 100 Hz.
ast = 80; % Stopband attenuation of filter, 80 dB.
fs = 2000; % Sampling frequency after interpolation.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

Now perform the actual design process with d. Filter hm is an IIR wave
digital filter interpolator. As in the previous example, realizemdl
returns a Simulink model of the filter if you have Simulink installed.

hm = design(d,'iirlinphase','filterstructure',...
'iirwdfinterp');
% Note that realizemdl requires Simulink
realizemdl(hm) % Build model of the filter.

See Also dfilt.cascadewdfallpass, mfilt.iirinterp, mfilt.iirwdfdecim

2-1114

mfilt.linearinterp

Purpose Linear interpolator

Syntax hm = mfilt.linearinterp(l)

Description hm = mfilt.linearinterp(l) returns an FIR linear interpolator hm
with an integer interpolation factor l. Provide l as a positive integer.
The default value for the interpolation factor is 2 when you do not
include the input argument l.

When you use this linear interpolator, the samples added to the input
signal have values between the values of adjacent samples in the
original signal. Thus you see something like a smooth profile where the
interpolated samples continue a line between the previous and next
original samples. The example demonstrates this smooth profile clearly.
Compare this to the interpolation process for mfilt.holdinterp, which
creates a stairstep profile.

Make this filter a fixed-point or single-precision filter by changing the
value of the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter

set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter

set(hm,'arithmetic','fixed');

Input Arguments

The following table describes the input argument for
mfilt.linearinterp.

2-1115

mfilt.linearinterp

Input
Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. It must
be an integer. When you do not specify a value for l
it defaults to 2.

Object
Properties

This section describes the properties for both floating-point filters
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties

Every multirate filter object has properties that govern the way it
behaves when you use it. Note that many of the properties are also
input arguments for creating mfilt.linearinterp objects. The next
table describes each property for an mfilt.linearinterp filter object.

Name Values Description

Arithmetic Double, single,
fixed

Specifies the arithmetic the
filter uses to process data
while filtering.

FilterStructure String Reports the type of filter
object. You cannot set this
property — it is always
read only and results from
your choice of mfilt object.

InterpolationFactor Integer Interpolation factor for
the filter. l specifies the
amount to increase the
input sampling rate. It
must be an integer.

2-1116

mfilt.linearinterp

Name Values Description

PersistentMemory ’false’ or ’true’ Determine whether the
filter states get restored
to zero for each filtering
operation

States Double or single
array

Filter states. states
defaults to a vector of
zeros that has length equal
to nstates(hm). Always
available, but visible in
the display only when
PersistentMemory is true.

Fixed-Point Filter Properties

This table shows the properties associated with the fixed-point
implementation of the mfilt.holdinterp filter.

Note The table lists all of the properties that a fixed-point filter can
have. Many of the properties listed are dynamic, meaning they exist
only in response to the settings of other properties. To view all of the
characteristics for a filter at any time, use

info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt
object, refer to “Multirate Filter Properties”.

2-1117

mfilt.linearinterp

Name Values Description

AccumFracLength Any positive or negative
integer number of
bits. Depends on L.
[29 when L=2]

Specifies the fraction length used
to interpret data output by the
accumulator.

AccumWordLength Any integer number of bits
[33]

Sets the word length used to store
data in the accumulator.

Arithmetic fixed for fixed-point filters Setting this to fixed allows you
to modify other filter properties to
customize your fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter
automatically chooses the proper
fraction length to represent filter
coefficients without overflowing.
Turning this off by setting the value
to false enables you to change the
NumFracLength property value to
specify the precision used.

CoeffWordLength Any integer number of bits
[16]

Specifies the word length to apply to
filter coefficients.

2-1118

mfilt.linearinterp

Name Values Description

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter
automatically sets the output
word and fraction lengths, product
word and fraction lengths, and
the accumulator word and fraction
lengths to maintain the best
precision results during filtering.
The default value, FullPrecision,
sets automatic word and fraction
length determination by the filter.
SpecifyPrecision makes the output
and accumulator-related properties
available so you can set your own
word and fraction lengths for them.

InputFracLength Any positive or negative
integer number of bits [15]

Specifies the fraction length the filter
uses to interpret input data.

InputWordLength Any integer number of bits
[16]

Specifies the word length applied to
interpret input data.

NumFracLength Any positive or negative
integer number of bits [14]

Sets the fraction length used to
interpret the numerator coefficients.

OutputFracLength Any positive or negative
integer number of bits [29]

Determines how the filter interprets
the filter output data. You can change
the value of OutputFracLength when
you set FilterInternals to
SpecifyPrecision.

OutputWordLength Any integer number of bits
[33]

Determines the word length
used for the output data. You
make this property editable by
setting FilterInternals to
SpecifyPrecision.

2-1119

mfilt.linearinterp

Name Values Description

OverflowMode saturate, [wrap] Sets the mode used to respond to
overflow conditions in fixed-point
arithmetic. Choose from either
saturate (limit the output to
the largest positive or negative
representable value) or wrap (set
overflowing values to the nearest
representable value using modular
arithmetic.) The choice you make
affects only the accumulator and
output arithmetic. Coefficient and
input arithmetic always saturates.
Finally, products never overflow —
they maintain full precision.

2-1120

mfilt.linearinterp

Name Values Description

RoundMode [convergent],
ceil,fix,floor, round

Sets the mode the filter uses to
quantize numeric values when the
values lie between representable
values for the data format (word and
fraction lengths).

• convergent — Round up to the
next allowable quantized value.

• ceil — Round to the nearest
allowable quantized value.
Numbers that are exactly halfway
between the two nearest allowable
quantized values are rounded up
only if the least significant bit
(after rounding) would be set to 1.

• fix — Round negative numbers
up and positive numbers down
to the next allowable quantized
value.

• floor — Round down to the next
allowable quantized value.

• round — Round to the nearest
allowable quantized value.
Numbers that are halfway
between the two nearest allowable
quantized values are rounded up.

The choice you make affects
only the accumulator and output
arithmetic. Coefficient and input
arithmetic always round. Finally,
products never overflow — they
maintain full precision.

2-1121

mfilt.linearinterp

Name Values Description

Signed [true], false Specifies whether the filter uses
signed or unsigned fixed-point
coefficients. Only coefficients reflect
this property setting.

States fi object Contains the filter states before,
during, and after filter operations.
States act as filter memory between
filtering runs or sessions. Notice
that the states use fi objects, with
the associated properties from
those objects. For details, refer to
fixed-point objects in Fixed-Point
Toolbox documentation or in the
online Help system. For information
about the ordering of the states, refer
to the filter structure in the following
section.

Filter
Structure

Linear interpolator structures depend on the FIR filter you use to
implement the filter. By default, the structure is direct-form FIR.

2-1122

mfilt.linearinterp

Examples Interpolation by a factor of 2 (used to convert the input signal sampling
rate from 22.05 kHz to 44.1 kHz).

l = 2; % Interpolation factor

hm = mfilt.linearinterp(l);

fs = 22.05e3; % Original sample freq: 22.05 kHz.

n = 0:5119; % 5120 samples, 0.232 second long signal

x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz

y = filter(hm,x); % 10240 samples, still 0.232 seconds

stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at

% 22.05 kHz

hold on % Plot interpolated signal (44.1

% kHz) in red

stem(n(1:44)/(fs*l),y(2:45),'r')

xlabel('Time (s)');ylabel('Signal Value')

2-1123

mfilt.linearinterp

Using linear interpolation, as compared to the hold approach of
mfilt.holdinterp, provides greater fidelity to the original signal.

0 0.2 0.4 0.6 0.8 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

See Also mfilt.holdinterp, mfilt.firinterp, mfilt.firfracinterp,
mfilt.cicinterp

2-1124

msepred

Purpose Predicted mean-squared error for adaptive filter

Syntax [mmse,emse] = msepred(ha,x,d)
[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d)
[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d,m)

Description [mmse,emse] = msepred(ha,x,d) predicts the steady-state values at
convergence of the minimum mean-squared error (mmse) and the excess
mean-squared error (emse) given the input and desired response signal
sequences in x and d and the property values in the adaptfilt object ha.

[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d) calculates three
sequences corresponding to the analytical behavior of the LMS adaptive
filter defined by ha:

• meanw — contains the sequence of coefficient vector means. The
columns of matrix meanw contain predictions of the mean values
of the LMS adaptive filter coefficients at each time instant. The
dimensions of meanw are (size(x,1))-by-(ha.length).

• mse — contains the sequence of mean-square errors. This column
vector contains predictions of the mean-square error of the LMS
adaptive filter at each time instant. The length of mse is equal to
size(x,1).

• tracek — contains the sequence of total coefficient error powers.
This column vector contains predictions of the total coefficient error
power of the LMS adaptive filter at each time instant. The length
of tracek is equal to size(x,1).

[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d,m) specifies an
optional input argument m that is the decimation factor for computing
meanw, mse, and tracek. When m > 1, msepred saves every mth predicted
value of each of these sequences. When you omit the optional argument
m, it defaults to one.

2-1125

msepred

Note msepred is available for the following adaptive filters only:
— adaptfilt.blms — adaptfilt.blmsfft — adaptfilt.lms —
adaptfilt.nlms — adaptfilt.se Using msepred is the same for any
adaptfilt object constructed by the supported filters.

Examples Analyze and simulate a 32-coefficient adaptive filter using 25 trials of
2000 iterations each.

x = zeros(2000,25); d = x; % Initialize variables

ha = fir1(31,0.5); % FIR system to be identified

x = filter(sqrt(0.75),[1 -0.5],sign(randn(size(x))));

n = 0.1*randn(size(x)); % observation noise signal

d = filter(ha,1,x)+n; % desired signal

l = 32; % Filter length

mu = 0.008; % LMS step size.

m = 5; % Decimation factor for analysis

% and simulation results

ha = adaptfilt.lms(l,mu);

[mmse,emse,meanW,mse,traceK] = msepred(ha,x,d,m);

[simmse,meanWsim,Wsim,traceKsim] = msesim(ha,x,d,m);

nn = m:m:size(x,1);

subplot(2,1,1);

plot(nn,meanWsim(:,12),'b',nn,meanW(:,12),'r',nn,...

meanWsim(:,13:15),'b',nn,meanW(:,13:15),'r');

title('Average Coefficient Trajectories for W(12), W(13),...

W(14) and W(15)');

legend('Simulation','Theory');

xlabel('Time Index'); ylabel('Coefficient Value');

subplot(2,2,3);

semilogy(nn,simmse,[0 size(x,1)],[(emse+mmse)...

(emse+mmse)],nn,mse,[0 size(x,1)],[mmse mmse]);

title('Mean-Square Error Performance');

axis([0 size(x,1) 0.001 10]);

legend('MSE (Sim.)','Final MSE','MSE','Min. MSE');

xlabel('Time Index'); ylabel('Squared Error Value');

2-1126

msepred

subplot(2,2,4);

semilogy(nn,traceKsim,nn,traceK,'r');

title('Sum-of-Squared Coefficient Errors'); axis([0 size(x,1)...

0.0001 1]);

legend('Simulation','Theory');

xlabel('Time Index'); ylabel('Squared Error Value');

Viewing the plots in this figure you see the various error values plotted
in both simulation and theory. Each subplot reveals more information
about the results as the simulation converges with the theoretical
performance.

See Also filter, maxstep, msesim

2-1127

msesim

Purpose Measured mean-squared error for adaptive filter

Syntax mse = msesim(ha,x,d)
[mse,meanw,w,tracek] = msesim(ha,x,d)
[mse,meanw,w,tracek] = msesim(ha,x,d,m)

Description mse = msesim(ha,x,d) returns the sequence of mean-square errors in
column vector mse. The vector contains estimates of the mean-square
error of the adaptive filter at each time instant during adaptation. The
length of mse is equal to size(x,1). The columns of matrix x contain
individual input signal sequences, and the columns of the matrix d
contain corresponding desired response signal sequences.

[mse,meanw,w,tracek] = msesim(ha,x,d) calculates three
parameters that correspond to the simulated behavior of the adaptive
filter defined by ha:

• meanw — sequence of coefficient vector means. The columns of this
matrix contain estimates of the mean values of the LMS adaptive
filter coefficients at each time instant. The dimensions of meanw are
(size(x,1))-by-(ha.length).

• w — estimate of the final values of the adaptive filter coefficients for
the algorithm corresponding to ha.

• tracek — sequence of total coefficient error powers. This column
vector contains estimates of the total coefficient error power of the
LMS adaptive filter at each time instant. The length of tracek is
equal to size(X,1).

[mse,meanw,w,tracek] = msesim(ha,x,d,m) specifies an optional
input argument m that is the decimation factor for computing meanw,
mse, and tracek. When m > 1, msepsim saves every mth predicted value
of each of these sequences. When you omit the optional argument m, it
defaults to one.

Examples Simulation of a 32-coefficient FIR filter using 25 trials, each trial having
2000 iterations of the adaptation process.

2-1128

msesim

x = zeros(2000,25); d = x; % Initialize variables

ha = fir1(31,0.5); % FIR system to be identified

x = filter(sqrt(0.75),[1 -0.5],sign(randn(size(x))));

n = 0.1*randn(size(x)); % Observation noise signal

d = filter(ha,1,x)+n; % Desired signal

l = 32; % Filter length

mu = 0.008; % LMS Step size.

m = 5; % Decimation factor for analysis

% and simulation results

ha = adaptfilt.lms(l,mu);

[simmse,meanWsim,Wsim,traceKsim] = msesim(ha,x,d,m);

nn = m:m:size(x,1);

subplot(2,1,1);

plot(nn,meanWsim(:,12),'b',nn,meanWsim(:,13:15),'b');

title('Average Coefficient Trajectories for W(12), W(13),...

W(14) and W(15)');

xlabel('Time Index'); ylabel('Coefficient Value');

subplot(2,2,3);

semilogy(nn,simmse);

title('Mean-Square Error Performance'); axis([0 size(x,1) 0.001...

10]);

legend('Measured MSE');

xlabel('Time Index'); ylabel('Squared Error Value');

subplot(2,2,4);

semilogy(nn,traceKsim);

title('Sum-of-Squared Coefficient Errors'); axis([0 size(x,1)...

0.0001 1]);

xlabel('Time Index'); ylabel('Squared Error Value');

Calculating the mean squared error for an adaptive filter is one measure
of the performance of the adapting algorithm. In this figure, you see a
variety of measures of the filter, including the error values.

2-1129

msesim

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Average Coefficient Trajectories for W(12), W(13), W(14) and W(15)

Time Index

C
oe

ffi
ci

en
t V

al
ue

0 500 1000 1500 2000
10

−3

10
−2

10
−1

10
0

10
1

Mean−Square Error Performance

Time Index

S
qu

ar
ed

 E
rr

or
 V

al
ue

Measured MSE

0 500 1000 1500 2000
10

−4

10
−3

10
−2

10
−1

10
0

Sum−of−Squared Coefficient Errors

Time Index

S
qu

ar
ed

 E
rr

or
 V

al
ue

See Also filter, msepred

2-1130

multistage

Purpose Multistage filter from specification object

Syntax hd = design(d,'multistage')
hd = design(...,'filterstructure',structure)
hd = design(...,'nstages',nstages)
hd = design(...,'usehalfbands',hb)

Description hd = design(d,'multistage') designs a multistage filter whose
response you specified by the filter specification object d.

hd = design(...,'filterstructure',structure) returns a filter with
the structure specified by structure. Input argument structure is
dffir by default and can also be one of the following strings.

structure String Valid with These Responses

firdecim Lowpass or Nyquist response

firtdecim Lowpass or Nyquist response

firinterp Lowpass or Nyquist response

lowpass Default lowpass only

Multistage design applies to the default lowpass filter specification
object and to decimators and interpolators that use either lowpass or
Nyquist responses.

hd = design(...,'nstages',nstages) specifies nstages, the number
of stages to be used in the design. nstages must be an integer or the
string auto. To allow the design algorithm to use the optimal number of
stages while minimizing the cost of using the resulting filter, nstages is
auto by default. When you specify an integer for nstages, the design
algorithm minimizes the cost for the number of stages you specify.

hd = design(...,'usehalfbands',hb) uses halfband filters when you
set hb to true. The default value for hb is false.

2-1131

multistage

Note To see a list of the design methods available for your filter, use
designmethods(hd).

Examples Design a minimum-order, multistage Nyquist interpolator. Use the
FilterStructure property to specify the Nyquist response.

l = 15; % Interpolation factor. Also the Nyquist band.

tw = 0.05; % Normalized transition width

ast = 40; % Minimum stopband attenuation in dB

d = fdesign.interpolator(l,'filterstructure','nyquist',l,tw,ast);

hm = design(d,'multistage');

fvtool(hm);

Design a multistage lowpass interpolator with an interpolation factor
of 8.

m = 8; % Interpolation factor;

d = fdesign.interpolator(m,'lowpass');

hm = design(d,'multistage','Usehalfbands',true); % Use halfband filters

% if possible.

fvtool(hm);

This figure shows the response for hm.

2-1132

multistage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

See Also design, designopts

2-1133

noisepsd

Purpose Power spectral density of filter output

Syntax hpsd = noisepsd(hd,l)
hpsd = noisepsd(hd,l,p1,v1,p2,v2,...)
noisepsd(hd,l,opts)

Description hpsd = noisepsd(hd,l) computes the power spectral density (PSD) at
the output of filter hd due to roundoff noise produced by quantization
errors within the filter. l is the number of trials used to compute the
average. The PSD is computed from the average over the l trials. The
more trials you specify, the better the estimate, but at the expense of
longer computation time. When you do not explicitly set l, it defaults
to 10 trials.

hpsd is a psd data object. To extract the PSD vector (the data from
the PSD) from hpsd, enter

get(hpsd,'data')

at the prompt. Plot the PSD data with plot(hpsd). The average power
of the output noise (the integral of the PSD) can be computed with
avgpower, a method of dspdata objects:

avgpwr = avgpower(hpsd).

hpsd = noisepsd(hd,l,p1,v1,p2,v2,...) specifies optional
parameters via propertyname/propertyvalue pairs. The properties of
the psd object, and the valid entries are:

Property Name Default Value Description and Valid Entries

Nfft 512 Specifies the number of FFT points to use
to calculate the PSD.

2-1134

noisepsd

Property Name Default Value Description and Valid Entries

NormalizedFrequency true Determines whether to use normalized
frequency. Enter one of the logical true
or false. Note that you do not use single
quotations around this property value
because it is a logical, not a string.

Fs normalized Specifies the sampling frequency to use
when you set NormalizedFrequency to
false. Any integer value greater than 1
works. Enter the value in Hz.

2-1135

noisepsd

Property Name Default Value Description and Valid Entries

SpectrumType onesided Tells noisepsd whether to generate a
one-sided PSD or two-sided. Options are
onesided or twosided. If you choose a
two-sided computation, you can also choose
centerdc = true. Otherwise, centerdc
must be false.

• onesided converts the spectrum to
a spectrum calculated over half the
Nyquist interval. All properties affected
by the new frequency range are adjusted
automatically.

• twosided converts the spectrum to a
spectrum calculated over the whole
Nyquist interval. All properties affected
by the new frequency range are adjusted
automatically.

CenterDC false Shifts the zero-frequency component to the
center of a two-sided spectrum.

• When you set SpectrumType to
onesided, it is changed to twosided
and the data is converted to a two-sided
spectrum.

• Setting CenterDC to false shifts the
data and the frequency values in the
object so that DC is in the left edge of the
spectrum. This operation does not effect
the SpectrumType property setting.

2-1136

noisepsd

Note If the spectrum data you specify is calculated over half the
Nyquist interval and you do not specify a corresponding frequency
vector, the default frequency vector assumes that the number of points
in the whole FFT was even. Also, the plot option to convert to a whole or
two-sided spectrum assumes the original whole FFT length was even.

noisepsd(hd,l,opts) uses an options object opts to specify the
optional input arguments instead of specifying property-value pairs in
the command. Use opts = noisepsdopts(hd) to create the object.
opts then has the noisepsd settings from hd. After creating opts, you
change the property values before calling noisepsd:

set(opts,'fs',48e3); % Set Fs to 48 kHz.

Examples Compute the PSD of the output noise caused by the quantization
processes in a fixed-point, direct form FIR filter.

b = firgr(27,[0 .4 .6 1],[1 1 0 0]);
h = dfilt.dffir(b); % Create the filter object.
% Quantize the filter to fixed-point.
h.arithmetic = 'fixed';
hpsd = noisepsd(h);
plot(hpsd)

hpsd looks similar to the following figure—the data resulting from the
noise PSD calculation. You can review the data in hpsd.data'.

2-1137

noisepsd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−130

−125

−120

−115

−110

−105

−100

Normalized Frequency (×π rad/sample)

P
ow

er
/fr

eq
ue

nc
y

(d
B

/r
ad

/s
am

pl
e)

Power Spectral Density

Here is the specification for hpsd.

hpsd =

Name: 'Power Spectral Density'
Data: [257x1 double]

SpectrumType: 'Onesided'
Frequencies: [257x1 double]

NormalizedFrequency: true
Fs: 'Normalized'

See Also filter, noisepsdopts, norm, reorder, scale

spectrum.welch in Signal Processing Toolbox

2-1138

noisepsd

References McClellan, et al., Computer-Based Exercises for Signal Processing Using
MATLAB 5, Prentice-Hall, 1998.

2-1139

noisepsdopts

Purpose Options for running filter output noise PSD

Syntax opts = noisepsdopts(hd)

Description opts = noisepsdopts(hd) uses the current settings in the filter hd
to create an options object opts that contains specified options for
computing the output noise PSD for a filter hd. You can pass opts to
the scale method as an input argument to apply scaling settings to a
second-order filter.

Within opts, the noisepsd options object returned by noisepsdopts,
you can set the following properties:

Property Name Default Value Description and Valid Entries

Nfft 512 Specifies the number of FFT points
to use to calculate the PSD.

NormalizedFrequency true Determines whether to use
normalized frequency. Enter one
of the logical true or false. Note
that you do not use single quotations
around this property value because
it is a logical value, not a string.

Fs normalized Specifies the sampling
frequency to use when you set
NormalizedFrequency to false.
Any integer value greater than 1
works. Enter the value in Hz.

2-1140

noisepsdopts

Property Name Default Value Description and Valid Entries

SpectrumType onesided Tells noisepsd whether to generate a
one-sided PSD or two-sided. Options
are onesided or twosided. If you
choose a two-sided computation, you
can also choose centerdc = true.
Otherwise, centerdc must be false.

• onesided converts the spectrum
to a spectrum calculated over
half the Nyquist interval. All
properties affected by the new
frequency range are adjusted
automatically.

• twosided converts the spectrum
to a spectrum calculated over
the whole Nyquist interval. All
properties affected by the new
frequency range are adjusted
automatically.

CenterDC false Shifts the zero-frequency component
to the center of a two-sided spectrum.

• When you set SpectrumType
to onesided, it is changed
to twosided and the data
is converted to a two-sided
spectrum.

• Setting CenterDC to false shifts
the data and the frequency values
in the object so that DC is in
the left edge of the spectrum.
This operation does not effect the
SpectrumType property setting.

2-1141

noisepsdopts

See Also noisepsd

2-1142

norm

Purpose P-norm of filter

Syntax l = norm(ha)
l = norm(ha,pnorm)
l = norm(hd)
l = norm(hd,pnorm)
l = norm(hm)
l = norm(hm,pnorm)

Description All of the variants of norm return the filter p-norm for the object in the
syntax, either an adaptive filter, a digital filter, or a multirate filter.
When you omit the pnorm argument, norm returns the L2-norm for
the object.

Note that by Parseval’s theorem, the L2-norm of a filter is equal to the
l2 norm. This equality is not true for the other norm variants.

For adaptfilt Objects

l = norm(ha) returns the L2-norm of an adaptive filter.l =
norm(ha,pnorm) adds the input argument pnorm to let you specify the
norm returned. pnorm can be either

• Frequency-domain norms specified by one of L1, L2, or Linf

• Discrete-time domain norms specified by one of l1, l2, or linf

For dfilt Objects

l = norm(hd) returns the L2-norm of a discrete-time filter.

l = norm(hd,pnorm) includes input argument pnorm that lets you
specify the norm returned. pnorm can be either

• Frequency-domain norms specified by one of L1, L2, or Linf

• Discrete-time domain norms specified by one of l1, l2, or linf

By Parseval’s theorem, the L2-norm of a filter is equal to the l2 norm.
This equality is not true for the other norm variants.

2-1143

norm

IIR filters respond slightly differently to norm. When you compute the
l2, linf, L1, and L2 norms for an IIR filter, norm(...,L2,tol) lets you
specify the tolerance for the accuracy in the computation. For l1, l2,
L2, and linf, norm uses the tolerance to truncate the infinite impulse
response that it uses to calculate the norm. For L1, norm passes the
tolerance to the numerical integration algorithm. Refer to Examples
to see this in use. You cannot specify Linf for the norm and include
the tol option.

For mfilt Objects

l = norm(hm) returns the L2-norm of a multirate filter.

l = norm(hm,pnorm) includes argument pnorm to let you specify the
norm returned. pnorm can be either

• Frequency-domain norms specified by one of L1, L2, or Linf

• Discrete-time domain norms specified by one of l1, l2, or linf

Note that, by Parseval’s theorem, the L2-norm of a filter is equal to the
l2 norm. This equality is not true for the other norm variants.

Examples Adaptfilt Objects

For the adaptive filter example, compute the 2-norm of an adaptfilt
object, here an LMS-based adaptive filter.

ha = adaptfilt.lms; % norm(ha) is zero because all coeffs are zero

% Create some data to filter to generate filter coeffs

x = randn(100,1);

d = x + randn(100,1);

[y,e] = filter(ha,x,d);

l2 = norm(ha); % Now norm(ha) is nonzero

l2 =

1.1231

2-1144

norm

Dfilt Objects

To demonstrate the tolerance option used with an IIR filter (dfilt
object), compute the 2-norm of filter hd with a tolerance of 1e-10.

d=fdesign.lowpass('n,fc',5,0.4)

d =

Response: 'Lowpass with cutoff'
Specification: 'N,Fc'

Description: {2x1 cell}
NormalizedFrequency: true

Fs: 'Normalized'
FilterOrder: 5

Fcutoff: 0.4000

hd = butter(d);
l2=norm(hd,'l2',1e-10)

l2 =

0.6336

Mfilt Objects

In this example, compute the infinity norm of an FIR interpolator,
which is an mfilt object.

hm = mfilt.firinterp;
linf = norm(hm,inf);
linf =

2.0002

See Also reorder, scale, scalecheck

2-1145

normalize

Purpose Normalize filter numerator or feed-forward coefficients

Syntax normalize(hq)
g = normalize(hd)

Description normalize(hq) normalizes the filter numerator coefficients for a
quantized filter to have values between -1 and 1. Notice that the
coefficients of hq change — normalize does not copy hq and return
the copy. To restore the coefficients of hq to the original values, use
denormalize.

Note that for lattice filters, the feed-forward coefficients stored in the
property lattice are normalized.

g = normalize(hd) normalizes the numerator coefficients for the filter
hq to between -1 and 1 and returns the gain g due to the normalization
operation. Calling normalize again does not change the coefficients. g
always returns the gain returned by the first call to normalize the filter.

Examples Create a direct form II quantized filter that uses second-order sections.
Then use normalize to maximize the use of the range of representable
coefficients.

d=fdesign.lowpass('n,fp,ap,ast',8,.5,2,40);

hd=ellip(d);

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'double'

sosMatrix: [4x6 double]

ScaleValues: [5x1 double]

PersistentMemory: 'on'

States: [2x4 double]

hd.arithmetic='fixed'

2-1146

normalize

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'

Arithmetic: 'fixed'

sosMatrix: [4x6 double]

ScaleValues: [5x1 double]

PersistentMemory: 'on'

States: [1x1 embedded.fi]

CoeffWordLength: 16

CoeffAutoScale: true

Signed: true

InputWordLength: 16

InputFracLength: 15

StageInputWordLength: 16

StageInputAutoScale: true

StageOutputWordLength: 16

StageOutputAutoScale: true

OutputWordLength: 16

OutputMode: 'AvoidOverflow'

StateWordLength: 16

StateFracLength: 15

ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'

AccumWordLength: 40

CastBeforeSum: true

RoundMode: 'convergent'

OverflowMode: 'wrap'

2-1147

normalize

InheritSettings: false

Check the filter coefficients to see that some of them are greater than 1.

hd.sosMatrix

ans =

1.0000 1.5132 1.0000 1.0000 -0.9207 0.4373

1.0000 0.3867 1.0000 1.0000 -0.2779 0.8242

1.0000 0.0929 1.0000 1.0000 -0.0514 0.9610

1.0000 0.0339 1.0000 1.0000 -0.0020 0.9934

Use normalize to modify the coefficients into the range between -1
and 1. A quick check of the SOS matrix shows all of the numerator
coefficients now within the limits. You see that g contains the gains
applied to each section of the SOS filter.

g = normalize(hd)

g =

1.5132

1.0000

1.0000

1.0000

hd.sosMatrix

ans =

0.6608 1.0000 0.6608 1.0000 -0.9207 0.4373

1.0000 0.3867 1.0000 1.0000 -0.2779 0.8242

1.0000 0.0929 1.0000 1.0000 -0.0514 0.9610

1.0000 0.0339 1.0000 1.0000 -0.0020 0.9934

Notice that none of the numerator coefficients exceed -1 or 1.

2-1148

normalize

See Also denormalize

2-1149

normalizefreq

Purpose Switch filter specification between normalized frequency and absolute
frequency

Syntax normalizefreq(d)
normalizefreq(d,flag)
normalizefreq(d,false,fs)

Description normalizefreq(d) normalizes the frequency specifications in filter
specifications object d. By default, the NormalizedFrequency property
is set to true when you create a design object. You provide the design
specifications in normalized frequency units. normalizefreq does not
affect filters that already use normalized frequency.

If you use this syntax when d does not use normalized frequency
specifications, all of the frequency specifications are normalized by fs/2
so they lie between 0 and 1, where fs is specified in the object. Included
in the normalization are the filter properties that define the filter pass
and stopband edge locations by frequency:

• F3 dB — Used by IIR filter specifications objects to describe the
passband cutoff frequency

• Fcutoff — Used by FIR filter specifications objects to describe the
passband cutoff frequency

• Fpass — Describes the passband edges

• Fstop — Describes the stopband edges

In this syntax, normalizefreq(d) assumes you specified fs when you
created d or changed d to use absolute frequency specifications.

normalizefreq(d,flag) where flag is either true or false, specifies
whether the NormalizedFrequency property value is true or false and
therefore whether the filter normalizes the sampling frequency fs and
other related frequency specifications. fs defaults to 1 for this syntax.

When you do not provide the input argument flag, it defaults to true.
If you set flag to false, affected frequency specifications are multiplied
by fs/2 to remove the normalization. Use this syntax to switch your

2-1150

normalizefreq

filter between using normalized frequency specifications and not using
normalized frequency specifications.

normalizefreq(d,false,fs) lets you specify a new sampling frequency
fs when you set the NormalizedFrequency property to false.

Examples These examples demonstrate using normalizefreq in both of the major
syntax applications—setting the design object frequency specifications
to use absolute frequency (normalizefreq(hd,false,fs)) and resetting a
design object to using normalized frequencies (normalizefreq(d)).

Construct a highpass filter specifications object by specifying the
passband and stopband edges and the desired attenuations in the
bands. By default, provide the frequency specifications in normalized
values between 0 and 1.

d=fdesign.highpass(0.35, 0.45, 60, 40)

d =

Response: 'Highpass'
Specification: 'Fst,Fp,Ast,Ap'

Description: {4x1 cell}
NormalizedFrequency: true

Fstop: 0.35
Fpass: 0.45
Astop: 60
Apass: 40

Fstop and Fpass are in normalized form, and the property
NormalizedFrequency is true.

Now use normalizedfreq to convert to absolute frequency
specifications, with a sampling frequency of 1000 Hz.

normalizefreq(d,false,1e3)
d

d =

2-1151

normalizefreq

Response: 'Highpass'
Specification: 'Fst,Fp,Ast,Ap'

Description: {4x1 cell}
NormalizedFrequency: false

Fs: 1000
Fstop: 175
Fpass: 225
Astop: 60
Apass: 40

Both of the attenuation specifications remain the same. The passband
and stopband edge definitions now appear in Hz, where the new value
represents the normalized values multiplied by Fs/2, or 500 Hz.

Converting to using normalized frequencies consists of using
normalizefreq with the design object d.

normalizefreq(d)
d

d =

Response: 'Highpass'
Specification: 'Fst,Fp,Ast,Ap'

Description: {4x1 cell}
NormalizedFrequency: true

Fstop: 0.35
Fpass: 0.45
Astop: 60
Apass: 40

For bandstop, bandpass, and multiple band filter specifications objects,
normalizefreq works the same way for all band edge definitions. When
you do not provide the sampling frequency Fs as an input argument and
you are converting to absolute frequency specifications, normalizefreq
sets Fs to 1, as shown in this example.

2-1152

normalizefreq

d=fdesign.bandstop(0.25,0.35,0.55,0.65,50,60)

d =

Response: 'Bandstop'
Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'

Description: {7x1 cell}
NormalizedFrequency: true

Fpass1: 0.25
Fstop1: 0.35
Fstop2: 0.55
Fpass2: 0.65
Apass1: 50
Astop: 60

Apass2: 50

normalizefreq(d,false)
d

d =

Response: 'Bandstop'
Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'

Description: {7x1 cell}
NormalizedFrequency: false

Fs: 1
Fpass1: 0.125
Fstop1: 0.175
Fstop2: 0.275
Fpass2: 0.325
Apass1: 50
Astop: 60

Apass2: 50

See Also fdesign.lowpass, fdesign.halfband, fdesign.highpass,
fdesign.interpolator

2-1153

nstates

Purpose Number of filter states

Syntax n = nstates(hd)
n = nstates(hm)

Description Discrete-Time Filters

n = nstates(hd) returns the number of states n in the discrete-time
filter hd. The number of states depends on the filter structure and the
coefficients.

Multirate Filters

n = nstates(hm) returns the number of states n in the multirate
filter hm. The number of states depends on the filter structure and the
coefficients.

Examples Check the number of states for two different filters, one a direct form
FIR filter, the other a multirate filter.

h=firls(30,[0 .1 .2 .5]*2,[1 1 0 0])

hd=dfilt.dffir(h)

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x31 double]

PersistentMemory: 'on'
States: [30x1 double]

n=nstates(hd)

n =

30

2-1154

nstates

hm=mfilt.firfracdecim(2,3)

hm =

FilterStructure: [1x46 char]
Numerator: [1x72 double]

RateChangeFactors: [2 3]
PersistentMemory: false

States: [35x1 double]

n=nstates(hm)

n =

35

See Also mfilt

2-1155

order

Purpose Order of fixed-point filter

Syntax n = order(hq)

Description n = order(hq) returns the order n of the quantized filter hq. When
hq is a single-section filter, n is the number of delays required for a
minimum realization of the filter.

When hq has more than one section, n is the number of delays required
for a minimum realization of the overall filter.

Examples Create a discrete-time filter. Quantize the filter and convert to
second-order section form. Then use order to check the order of the
filter.

[b,a] = ellip(4,3,20,.6); % Create the reference filter.
hq = dfilt.df2(b,a);
% Quantize the filter and convert to second-order sections.
set(hq,'arithmetic','fixed');

n=order(hq) % Check the order of the overall filter.
n = 4

2-1156

parallel

Purpose Multirate parallel filter structure

Syntax hmp = parallel(hm1,hm2,...,hmn)

Description hmp = parallel(hm1,hm2,...,hmn) returns a multirate filter hmp that
is two or more mfilt objects hm1, hm2, and so on connected in a parallel
structure. Each filter in the structure is one stage and all stages must
have the same rate change factor.

Access the individual filters in the parallel structure by

See Also dfilt.parallel, mfilt

2-1157

phasedelay

Purpose Phase delay of filter

Syntax phasedelay(hd)
[phi,w]=phasedelay(hd,n)
[phi,w]=phasedelay(...,f)
phasedelay(hm)
[phi,w] = phasedelay(hm,n)
[phi,w] = phasedelay(...,f)
[phi,w] = phasedelay(...,fs)

Description The following sections describe phasedelay operation for discrete-time
filters and multirate filters. For more information about optional
input arguments for phasedelay, refer to phasez in Signal Processing
Toolbox.

Discrete-Time Filters

phasedelay(hd) displays the phase delay response of hd in the Filter
Visualization Tool (FVTool).

[phi,w]=phasedelay(hd,n) returns vectors phi and w containing
the instantaneous phase delay response of the adaptive filter hd, and
the frequencies in radians at which it is evaluated. The response is
evaluated at n points equally spaced around the upper half of the unit
circle. When you do not specify n, it defaults to 8192.

If hd is a vector of filter objects, phasedelay returns phi as a matrix.
Each column of phi corresponds to one filter in the vector. If you
provide a row vector of frequency points f as an input argument, each
row of phi corresponds to each filter in the vector. You can provide fs,
the sampling frequency, as an input as well. phasedelay uses fs to
calculate the delay response and plots the response to fs/2.

Multirate Filters

phasedelay(hm) displays the phase response of hm in the Filter
Visualization Tool (FVTool).

[phi,w]=phasedelay(hm,n) returns vectors phi and w containing
the instantaneous phase delay response of the adaptive filter hm, and

2-1158

phasedelay

the frequencies in radians at which it is evaluated. The response is
evaluated at n points equally spaced around the upper half of the unit
circle. When you do not specify n, it defaults to 8192.

If hm is a vector of filter objects, phasedelay returns phi as a matrix.
Each column of phi corresponds to one filter in the vector. If you provide
a row vector of frequency points f as an input argument, each row of
phi corresponds to each filter in the vector.

Note that the multirate filter delay response is computed relative to the
rate at which the filter is running. When you specify fs (the sampling
rate) as an input argument, phasedelay assumes the filter is running
at that rate.

For multistage cascades, phasedelay forms a single-stage multirate
filter that is equivalent to the cascade and computes the response
relative to the rate at which the equivalent filter is running. phasedelay
does not support all multistage cascades. Only cascades for which it
is possible to derive an equivalent single-stage filter are allowed for
analysis.

As an example, consider a 2-stage interpolator where the first
stage has an interpolation factor of 2 and the second stage has an
interpolation factor of 4. An equivalent single-stage filter with an
overall interpolation factor of 8 can be found. phasedelay uses the
equivalent filter for the analysis. If a sampling frequency fs is specified
as an input argument to phasedelay, the function interprets fs as the
rate at which the equivalent filter is running.

See Also freqz, grpdelay, phasez, zerophase, zplane

freqz, fvtool, phasez, zerophase in Signal Processing Toolbox
documentation

2-1159

phasez

Purpose Unwrapped phase response for filter

Syntax phasez(ha)
[phi,w] = phasez(ha,n)
[phi,w] = phasez(...,f)
phasez(hd)
[phi,w] = phasez(hd,n)
[phi,w] = phasez(...,f)phasez(hm)
[phi,w] = phasez(hm,n)
[phi,w] = phasez(...,f)
[phi,w] = phasez(...,fs)

Description The following sections describe phasez operation for adaptive filters,
discrete-time filters, and multirate filters. For more information
about optional input arguments for phasez, refer to phasez in Signal
Processing Toolbox.

Adaptive Filters

For adaptive filters, phasez returns the instantaneous unwrapped
phase response based on the current filter coefficients.

phasez(ha) displays the phase response of ha in the Filter Visualization
Tool (FVTool).

[phi,w]=phasez(ha,n) returns vectors phi and w containing the
instantaneous phase response of the adaptive filter ha, and the
frequencies in radians at which it is evaluated. The phase response is
evaluated at n points equally spaced around the upper half of the unit
circle. When you do not specify n, it defaults to 8192.

If ha is a vector of filter objects, phasez returns phi as a matrix. Each
column of phi corresponds to one filter in the vector. If you provide a
row vector of frequency points f as an input argument, each row of phi
corresponds to each filter in the vector.

Discrete-Time Filters

phasez(hd) displays the phase response of hd in the Filter Visualization
Tool (FVTool).

2-1160

phasez

[phi,w]=phasez(hd,n) returns vectors phi and w containing the
instantaneous phase response of the adaptive filter hd, and the
frequencies in radians at which it is evaluated. The phase response is
evaluated at n points equally spaced around the upper half of the unit
circle. When you do not specify n, it defaults to 8192.

If hd is a vector of filter objects, phasez returns phi as a matrix. Each
column of phi corresponds to one filter in the vector. If you provide a
row vector of frequency points f as an input argument, each row of phi
corresponds to each filter in the vector.

Multirate Filters

phasez(hm) displays the phase response of hm in the Filter Visualization
Tool (FVTool).

[phi,w]=phasez(hm,n) returns vectors phi and w containing the
instantaneous phase response of the adaptive filter hm, and the
frequencies in radians at which it is evaluated. The phase response is
evaluated at n points equally spaced around the upper half of the unit
circle. When you do not specify n, it defaults to 8192.

If hm is a vector of filter objects, phasez returns phi as a matrix. Each
column of phi corresponds to one filter in the vector. If you provide a
row vector of frequency points f as an input argument, each row of phi
corresponds to each filter in the vector.

Note that the multirate filter response is computed relative to the rate
at which the filter is running. When you specify fs (the sampling rate)
as an input argument, phasez assumes the filter is running at that rate.

For multistage cascades, phasez forms a single-stage multirate filter
that is equivalent to the cascade and computes the response relative
to the rate at which the equivalent filter is running. phasez does not
support all multistage cascades. Only cascades for which it is possible
to derive an equivalent single-stage filter are allowed for analysis.

As an example, consider a 2-stage interpolator where the first
stage has an interpolation factor of 2 and the second stage has an
interpolation factor of 4. An equivalent single-stage filter with
an overall interpolation factor of 8 can be found. phasez uses the

2-1161

phasez

equivalent filter for the analysis. If a sampling frequency fs is specified
as an input argument to phasez, the function interprets fs as the rate
at which the equivalent filter is running.

See Also freqz, grpdelay, phasedelay, zerophase, zplane

freqz, fvtool, phasez in Signal Processing Toolbox documentation

2-1162

polyphase

Purpose Polyphase decomposition of multirate filter

Syntax p = polyphase(hm)
polyphase(hm)

Description p = polyphase(hm) returns the polyphase matrix p of the multirate
filter hm. Each row in the matrix represents one subfilter of the
multirate filter. The first row of matrix p represents the first subfilter,
the second row the second subfilter, and so on to the last subfilter.

polyphase(hm) called with no output argument launches the Filter
Visualization Tool (FVTool) with all the polyphase subfilters to allow
you to analyze each component subfilter individually.

Examples When you create a multirate filter that uses polyphase decomposition,
polyphase lets you analyze the component filters individually by
returning the components as rows in a matrix.

This example creates an interpolate by eight filter.

hm=mfilt.firinterp(8)

hm =

FilterStructure: 'Direct-Form FIR Polyphase Interpolator'

Numerator: [1x192 double]

InterpolationFactor: 8

PersistentMemory: false

States: [23x1 double]

In this syntax, the matrix p contains all of the subfilters for hm, one
filter per matrix row.

p=polyphase(hm)

p =

Columns 1 through 8

2-1163

polyphase

0 0 0 0 0 0 0 0

-0.0000 0.0002 -0.0006 0.0013 -0.0026 0.0048 -0.0081 0.0133

-0.0001 0.0004 -0.0012 0.0026 -0.0052 0.0094 -0.0160 0.0261

-0.0001 0.0006 -0.0017 0.0038 -0.0074 0.0132 -0.0223 0.0361

-0.0002 0.0008 -0.0020 0.0045 -0.0086 0.0153 -0.0257 0.0415

-0.0002 0.0008 -0.0021 0.0045 -0.0086 0.0151 -0.0252 0.0406

-0.0002 0.0007 -0.0018 0.0038 -0.0071 0.0124 -0.0205 0.0330

-0.0001 0.0004 -0.0011 0.0022 -0.0041 0.0072 -0.0118 0.0189

Columns 9 through 16

0 0 0 0 1.0000 0 0 0

-0.0212 0.0342 -0.0594 0.1365 0.9741 -0.1048 0.0511 -0.0303

-0.0416 0.0673 -0.1189 0.2958 0.8989 -0.1730 0.0878 -0.0527

-0.0576 0.0938 -0.1691 0.4659 0.7814 -0.2038 0.1071 -0.0648

-0.0661 0.1084 -0.2003 0.6326 0.6326 -0.2003 0.1084 -0.0661

-0.0648 0.1071 -0.2038 0.7814 0.4659 -0.1691 0.0938 -0.0576

-0.0527 0.0878 -0.1730 0.8989 0.2958 -0.1189 0.0673 -0.0416

-0.0303 0.0511 -0.1048 0.9741 0.1365 -0.0594 0.0342 -0.0212

Columns 17 through 24

0 0 0 0 0 0 0 0

0.0189 -0.0118 0.0072 -0.0041 0.0022 -0.0011 0.0004 -0.0001

0.0330 -0.0205 0.0124 -0.0071 0.0038 -0.0018 0.0007 -0.0002

0.0406 -0.0252 0.0151 -0.0086 0.0045 -0.0021 0.0008 -0.0002

0.0415 -0.0257 0.0153 -0.0086 0.0045 -0.0020 0.0008 -0.0002

0.0361 -0.0223 0.0132 -0.0074 0.0038 -0.0017 0.0006 -0.0001

0.0261 -0.0160 0.0094 -0.0052 0.0026 -0.0012 0.0004 -0.0001

0.0133 -0.0081 0.0048 -0.0026 0.0013 -0.0006 0.0002 -0.0000

Finally, using polyphase without an output argument opens the Filter
Visualization Tool, ready for you to use the analysis capabilities of the
tool to investigate the interpolator hm.

polyphase(hm)

2-1164

polyphase

In the following figure, FVTool shows the magnitude responses for the
subfilters.

See Also mfilt

2-1165

qreport

Purpose Most recent fixed-point filtering operation report

Syntax rlog = qreport(h)

Description rlog = qreport(h) returns the logging report stored in the filter object
h in the object rlog. The ability to log features of the filtering operation
is integrated in the fixed-point filter object and the filter method.

Each time you filter a signal with h, new log data overwrites the results
in the filter from the previous filtering operation. To save the log from a
filtering simulation, change the name of the output argument for the
operation before subsequent filtering runs.

Note qreport requires Fixed-Point Toolbox and that filter h is a
fixed-point filter. Data logging for fi operations is a preference you set
for each MATLAB session. To learn more about logging, LoggingMode,
and fi object preferences, refer to fipref in the documentation for
Fixed-Point Toolbox in the online Help system.

Also, you cannot use qreport to log the filtering operations from a
fixed-point Farrow filter.

Enable logging during filtering by setting LoggingMode to on for fi
objects for your MATLAB session. Trigger logging by setting the
Arithmetic property for h to fixed, making h a fixed-point filter and
filtering an input signal.

Using Fixed-Point Filtering Logging

Filter operation logging with qreport requires some preparation in
MATLAB. Complete these steps before you use qreport.

1 Set the fixed-point object preference for LoggingMode to on for your
MATLAB session. This setting enables data logging.

fipref('LoggingMode','on')

2-1166

qreport

2 Create your fixed-point filter.

3 Filter a signal with the filter.

4 Use qreport to return the filtering information stored in the filter
object.

qreport provides a way to instrument your fixed-point filters and
the resulting data log offers insight into how the filter responds to a
particular input data signal.

Report object rlog contains a filter-structure-specific list of internal
signals for the filter. Each signal contains

• Minimum and maximum values that were recorded during the last
simulation. Minimum and maximum values correspond to values
before quantization.

• Representable numerical range of the word length and fraction
length format

• Number of overflows during filtering for that signal.

Examples qreport depends on the LoggingMode preference for fixed-point objects.
This example demonstrates the process for enabling and using qreport
to log the results of filtering with a fixed-point filter. hd is a fixed-point
direct-form FIR filter.

f = fipref('loggingmode','on');
hd = design(fdesign.lowpass,'equiripple');
hd.arithmetic = 'fixed';
fs = 1000; % Input sampling frequency.
t = 0:1/fs:1.5; % Signal length = 1501 samples.
x = sin(2*pi*10*t); % Amplitude = 1 sinusoid.
y = filter(hd,x);
rlog = qreport(hd)

2-1167

qreport

View the logging report of a direct-form II, second-order sections IIR
filter the same way. While this example sets loggingmode to on, you
do that only once for a MATLAB session, unless you reset the mode
to off during the session.

fipref('loggingmode','on');
hd = design(fdesign.lowpass,'ellip');
hd.arithmetic = 'fixed';
rand('state',0);
y = filter(hd,rand(100,1));
rlog = qreport(hd)

See Also dfilt, mfilt

2-1168

realizemdl

Purpose Simulink subsystem block for filter

Syntax realizemdl(hq)
realizemdl(hq,propertyname1,propertyvalue1,...)

Description realizemdl(hq) generates a model of filter hq in a Simulink subsystem
block using sum, gain, and delay blocks from Simulink. The properties
and values of hq define the resulting subsystem block parameters.

realizemdl requires Simulink. To accurately realize models of
quantized filters, use Simulink Fixed-Point.

realizemdl(hq,propertyname1,propertyvalue1,...) generates the
model or hq with the associated propertyname/propertyvalue pairs,
and any other values you set in hq.

Note Subsystem filter blocks that you use realizemdl to create
support sample-based input and output only. You cannot input or output
frame-based signals with the block.

Using the optional propertyname/propertyvalue pairs lets you control
more fully the way the block subsystem model gets built, such as where
the block goes, what the name is, or how to optimize the block structure.
Valid properties and values for realizemdl are listed in this table, with
the default value noted and descriptions of what the properties do.

2-1169

realizemdl

Property Name Property Values Description

Destination 'current' (default)
or 'new'or
Subsystemname

Specify whether to
add the block to your
current Simulink
model or create a
new model to contain
the block. If you
provide the name of
a current subsystem
in subsystemname,
realizemdl adds
the new block to the
specified subsystem.

Blockname 'filter' (default) Provides the name for
the new subsystem
block. By default
the block is named
’filter’. To enter
a name for the
block, use the
propertyvalue set to
a string ’blockname’.

OverwriteBlock 'off' or 'on' Specify whether to
overwrite an existing
block with the same
name or create a new
block.

OptimizeZeros 'off' (default) or
'on'

Specify whether to
remove zero-gain
blocks.

OptimizeOnes 'off' (default) or
'on'

Specify whether to
replace unity-gain
blocks with direct
connections.

2-1170

realizemdl

Property Name Property Values Description

OptimizeNegOnes 'off' (default) or
'on'

Specify whether to
replace negative
unity-gain blocks
with a sign change
at the nearest sum
block.

OptimizeDelayChains 'off' (default) or
'on'

Specify whether to
replace cascaded
chains of delay blocks
with a single integer
delay block to provide
an equivalent delay.

Examples To demonstrate how realizemdl works to create models, these two
examples show the default and optional syntaxes in use. Both examples
begin from a quantized filter designed by butter in Signal Processing
Toolbox.

[b,a] = butter(4,.5);
hq = dfilt.df1(b,a);

Example 1

Using the default syntax to realize a model of your quantized filter hq.
When you use this syntax, realizemdl uses blocks from Simulink and
Simulink Fixed-Point to realize the subsystem in your current Simulink
model.

realizemdl(hq);

Look at the figure to see the model as realized by realizemdl.

2-1171

realizemdl

Example 2

Using propertyname/propertyvalue pairs to specify the features of the
subsystem block model created by realizemdl.

First, convert the filter to fixed-point arithmetic to ensure a few zero
valued coefficients:

hq.arithmetic = 'fixed';

Your filter has two zero value denominators, a(2) and a(4):

FilterStructure: 'Direct-Form I'
Arithmetic: 'fixed'

Numerator: [0.0940 0.3759 0.5639 0.3759 0.0940]
Denominator: [1 0 0.4860 0 0.0176]

PersistentMemory: false
States: Numerator: [4x1 fi]

Denominator:[4x1 fi]

Now realize the model implementation.

realizemdl(hq,'optimizezeros','on',...

2-1172

realizemdl

'blockname','newfiltermodel');

Since this example uses the optional property name optimizezeros,
set to ’on’, the resulting block subsystem is slightly different — the
zero-gain blocks for coefficients a(2) and a(4) are not included in the
subsystem.

See Also realizemdl under the methods for dfilt in Signal Processing Toolbox

2-1173

reffilter

Purpose Reference filter for fixed-point or single-precision filter

Syntax href = reffilter(hd)

Description href = reffilter(hd) returns a new filter href that has the same
structure as hd, but uses the reference coefficients and has its arithmetic
property set to double. Note that hd can be either a fixed-point filter
(arithmetic property set to ’fixed’, or a single-precision floating-point
filter whose arithmetic property is ’single’).

reffilter(hd) differs from double(hd) in that

• the filter href returned by reffilter has the reference coefficients
of hd.

• double(hd) returns the quantized coefficients of hd represented in
double-precision.

To check the performance of your fixed-point filter, use
href = reffilter(hd) to quickly have the floating-point,
double-precision version of hd available for comparison.

Examples Compare several fixed-point quantizations of a filter with the same
double-precision floating-point version of the filter.

h = dfilt.dffir(firceqrip(87,.5,[1e-3,1e-6])); % Lowpass filter.

h1 = copy(h); h2 = copy(h); % Create copies of h.

h.arithmetic = 'fixed'; % Set h to filter using fixed-point...

% arithmetic.

h1.arithmetic = 'fixed'; % Same for h1.

h2.arithmetic = 'fixed'; % Same for h2.

h.CoeffWordLength = 16; % Use 16 bits to represent the...

% coefficients.

h1.CoeffWordLength = 12; % Use 12 bits to represent the...

% coefficients.

h2.CoeffWordLength = 8; % Use 8 bits to represent the...

% coefficients.

href = reffilter(h);

2-1174

reffilter

hfvt = fvtool(href,h,h1,h2);

set(hfvt,'ShowReference','off'); % Reference displayed once

% already.

legend(hfvt,'Reference filter','16-bits','12-bits','8-bits');

The following plot, taken from FVTool, shows href, the reference filter,
and the effects of using three different word lengths to represent the
coefficients.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−200

−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)
Reference Filte
16−bit Filter
12−bit Filter
8−bit Filter

As expected, the fidelity of the fixed-point filters suffers as you change
the representation of the coefficients. With href available, it is easy to
see just how the fixed-point filter compares to the ideal.

See Also double

2-1175

reorder

Purpose Rearrange sections in SOS filter

Syntax reorder(hd,order)
reorder(hd,numorder,denorder)
reorder(hd,numorder,denorder,svorder)
reorder(hd,filter_type)
reorder(hd,dir_flag)
reorder(hd,dir_flag,sv)

Description reorder(hd,order) rearranges the sections of filter hd using the vector
of indices provided in order.

order does not need to contain all of the indices of the filter. Omitting
one or more filter section indices removes the omitted sections from the
filter. You can use a logical array to remove sections from the filter, but
not to reorder it (refer to the Examples to see this done).

reorder(hd,numorder,denorder) reorders the numerator and
denominator separately using the vectors of indices in numorder and
denorder. These two vectors must be the same length.

reorder(hd,numorder,denorder,svorder) the scale values can be
independently reordered. When svorder is not specified, the scale
values are reordered with the numerator. The output scale value always
remains on the end when you use the argument numorder to reorder
the scale values.

reorder(hd,filter_type) where filter_type is one of auto, lowpass,
highpass, bandpass, or bandstop, reorders hd in a way suitable for the
filter type you specify by filter_type. This reordering mode can be
especially helpful for fixed-point implementations where the order of
the filter sections can significantly affect your filter performance.

The auto option and automatic ordering only apply to filters that you
used fdesign to create. With the auto option as an input argument,
reorder automatically rearranges the filter sections depending on the
specification response type of the design, such as lowpass, or bandstop.
This technique appears in the first example.

2-1176

reorder

reorder(hd,dir_flag) if dir_flag is up, the first filter section
contains the poles closest to the origin, and the last section contains the
poles closest to the unit circle. When dir_flag is down, the sections
are ordered in the opposite direction. reorder always pairs zeros with
the poles closest to them.

reorder(hd,dir_flag,sv) sv is either the string poles or zeros and
describes how to reorder the scale values. By default the scale values
are not reordered when you use the dir_flag option.

Examples Being able to rearrange the order of the sections in a filter can be a
powerful tool for controlling the filter process. This example uses
reorder to change the sections of a df2sos filter. Let reorder do
the reordering automatically in the first example. In the second, use
reorder to specify the new order for the sections.

First use the automatic reordering option on a lowpass filter.

d = fdesign.lowpass('n,f3db',15,0.75)
hd = design(d,'butter');
d =

Response: 'Lowpass'
Specification: 'N,F3dB'

Description: {'Filter Order';'3dB Frequency'}
NormalizedFrequency: true

FilterOrder: 15
F3dB: 0.75

reorder(hd,'auto')
hd

hd =

FilterStructure: 'Direct-Form II,
Second-Order Sections'

Arithmetic: 'double'
sosMatrix: [8x6 double]

2-1177

reorder

ScaleValues: [9x1 double]
PersistentMemory: false

The SOS matrices show the reordering.

hd.sosMatrix

ans =
1.0000 2.0000 1.0000 1.0000 1.3169 0.8623
1.0000 2.0000 1.0000 1.0000 1.1606 0.6414
1.0000 2.0000 1.0000 1.0000 1.0448 0.4776
1.0000 2.0000 1.0000 1.0000 0.9600 0.3576
1.0000 2.0000 1.0000 1.0000 0.8996 0.2722
1.0000 2.0000 1.0000 1.0000 0.8592 0.2151
1.0000 2.0000 1.0000 1.0000 0.8360 0.1823
1.0000 1.0000 0 1.0000 0.4142 0

hdreorder.sosMatrix

ans =

1.0000 2.0000 1.0000 1.0000 1.0448 0.4776
1.0000 2.0000 1.0000 1.0000 0.8360 0.1823
1.0000 2.0000 1.0000 1.0000 0.8996 0.2722
1.0000 2.0000 1.0000 1.0000 1.3169 0.8623
1.0000 2.0000 1.0000 1.0000 0.9600 0.3576
1.0000 1.0000 0 1.0000 0.4142 0
1.0000 2.0000 1.0000 1.0000 0.8592 0.2151
1.0000 2.0000 1.0000 1.0000 1.1606 0.6414

For another example of using reorder, create an SOS filter in the direct
form II implementation.

[z,p,k] = butter(15,.5);
[sos, g] = zp2sos(z,p,k);
hd = dfilt.df2sos(sos,g);

2-1178

reorder

Reorder the sections by moving the second section to be between the
seventh and eighth sections.

reorder(hd, [1 3:7 2 8]);
hfvt = fvtool(hd, 'analysis', 'coefficients');

Remove the third, fourth and seventh sections.

hd1 = copy(hd);
reorder(hd1, logical([1 1 0 0 1 1 0 1]));
setfilter(hfvt, hd1);

Move the first filter to the end and remove the eighth section

hd2 = copy(hd);
reorder(hd2, [2:7 1]);
setfilter(hfvt, hd2);

Move the numerator and denominator independently.

hd3 = copy(hd);
reorder(hd3, [1 3:8 2], [1:8]);
setfilter(hfvt, hd3);

See Also cumsec, scale, scaleopts

References Schlichthärle, Dietrich, Digital Filters Basics and Design,
Springer-Verlag Berlin Heidelberg, 2000.

2-1179

reset

Purpose Reset filter properties to initial conditions

Syntax reset(ha)
reset(hd)
reset(hm)

Description reset(ha) resets all the properties of the adaptive filter ha that are
updated when filtering to the value specified at construction. If you
do not specify a value for any particular property when you construct
an adaptive filter, the property value for that property is reset to the
default value for the property.

reset(hd) resets all the properties of the discrete-time filter hd to their
factory values that are modified when you run the filter. In particular,
the States property is reset to zero.

reset(hm) resets all the properties of the multirate filter hm to their
factory value that are modified when the filter is run. In particular, the
States property is reset to zero when hm is a decimator. Additionally,
the filter internal properties are also reset to their factory values.

Examples Denoise a sinusoid and reset the filter after filtering with it.

h = adaptfilt.lms(5,.05,1,[0.5,0.5,0.5,0.5,0.5]);
n = filter(1,[1 1/2 1/3],.2*randn(1,2000));
d = sin((0:1999)*2*pi*0.005) + n; % Noisy sinusoid
x = n;
[y,e]= filter(h,x,d); % e has denoised signal
disp(h)
reset(h); % Reset the coefficients and states.
disp(h)

See Also quantizer, set

2-1180

scale

Purpose Scale sections of SOS filter

Syntax scale(hd)
scale(hd,pnorm)
scale(hd,pnorm,p1,v1,p2,v2,...)
scale(hd,pnorm,opts)

Description scale(hd) scales the second-order section filter hd using peak
magnitude response scaling (L-infinity, Linf), to reduce the possibility of
overflows when your filter hd operates in fixed-point arithmetic mode.

scale(hd,pnorm) specifies the norm used to scale the filter. pnorm can
be either a discrete-time-domain norm or a frequency-domain norm.

Valid time-domain norm values for pnorm are l1, l2, and linf. Valid
frequency-domain norm values are L1, L2, and Linf. Note that L2 norm
is equal to l2 norm (by Parseval’s theorem) but this is not true for other
norms — l1 is not the same as L1 and Linf is not the same as linf.

Filter norms can be ordered in terms of how stringent they are, as
follows from most stringent to least:

l1 >= Linf >= L2 = l2 >= L1 >= linf

Using l1, the most stringent scaling, produces a filter that is least
likely to overflow, but has the worst signal-to-noise ratio performance.
Linf scaling, the least stringent, and the default scaling, is the most
commonly used scaling norm.

scale(hd,pnorm,p1,v1,p2,v2,...) uses parameter name/parameter
value pair input arguments to specify optional scaling parameters.
Valid parameter names and options values appear in the table.

2-1181

scale

Parameter Default
Description and Valid
Value

MaxNumerator 2 Maximum allowed
value for numerator
coefficients.

MaxScaleValue Not Used Maximum allowed scale
values. The filter applies
the MaxScaleValue
limit only when you set
ScaleValueConstraint
to a value other than
unit (the default setting).
Setting MaxScaleValue
to any numerical
value automatically
changes the
ScaleValueConstraint
setting to none.

NumeratorConstraint none Specifies whether
and how to constrain
numerator coefficient
values. Options are none,
normalize, po2, and
unit

OverflowMode wrap Sets the way the filter
handles arithmetic
overflow situations
during scaling. Choose
from wrap, saturate or
satall.

2-1182

scale

Parameter Default
Description and Valid
Value

ScaleValueConstraint unit Specify whether to
constrain the filter
scale values, and how
to constrain them. Valid
options are none, po2, and
unit. Choosing unit for
the constraint disables
the MaxScaleValue
property setting. po2
constrains the scale
values to be powers of 2,
while none removes any
constraint on the scale
values.

sosReorder auto Reorder filter sections
prior to applying scaling.
Select one of auto, none,
up, or down.

If your device does not have guard bits available and you are
using saturation arithmetic for filtering, use the satall setting for
OverFlowMode instead of saturate.

With the Arithmetic property of hd set to double or single, the filter
uses the default values for all options that you do not specify explicitly.
When you set Arithmetic to fixed, the values used for the scaling
options are set according to the settings in filter hd. However, if you
specify a scaling option different from the settings in hd, the filter uses
your explicit option selection for scaling purposes, but does not change
the property setting in hd.

scale(hd,pnorm,opts) uses an input scale options object opts
to specify the optional scaling parameters in lieu of specifying
parameter-value pairs. You can create the opts object using

2-1183

scale

opts = scaleopts(hd)

For more information about scaling objects, refer to scaleopts in the
Help system.

Examples Demonstrate the Linf-norm scaling of a lowpass elliptic filter with
second-order sections. Start by creating a lowpass elliptical filter in
zero, pole, gain (z,p,k) form.

[z,p,k] = ellip(5,1,50,.3);

[sos,g] = zp2sos(z,p,k);

hd = dfilt.df2sos(sos,g);

scale(hd,'linf','scalevalueconstraint','none','maxscalevalue',2)

See Also cumsec, norm, reorder, scalecheck, scaleopts

2-1184

scalecheck

Purpose Check scaling of SOS filter

Syntax s = scalecheck(hd,pnorm)

Description For df1sos and df2tsos Filters

s = scalecheck(hd,pnorm) returns a row vector s that reports the
p-norm of the filter computed from the filter input to the output of each
second-order section. Therefore, the number of elements in s is one
less than the number of sections in the filter. Note that this p-norm
computation does not include the trailing scale value of the filter (which
you can find by entering

hd.scalevalue(end)

at the MATLAB prompt.

pnorm can be either frequency-domain norms specified by L1, L2, or
Linf or discrete-time-domain norms — l1, l2, linf. Note that the
L2-norm of a filter is equal to the l2-norm (Parseval’s theorem). This is
not true for other norms.

For df2sos and df1tsos Filters

s = scalecheck(hd,pnorm) returns s, a row vector whose elements
contain the p-norm from the filter input to the input of the recursive
part of each second-order section. This computation of the p-norm
corresponds to the input to the multipliers in these filter structures, and
are the locations in the signal flow where overflow should be avoided.

When hd has nontrivial scale values, that is, if any scale values are not
equal to one, s is a two-row matrix, rather than a vector. The first row
elements of s report the p-norm of the filter computed from the filter
input to the output of each second-order section. The elements of the
second row of s contain the p-norm computed from the input of the
filter to the input of each scale value between the sections. Note that
for df2sos and df1tsos filter structures, the last numerator and the
trailing scale value for the filter are not included when scalecheck
checks the scale.

2-1185

scalecheck

For a given p-norm, an optimally scaled filter has partial norms equal
to one, so matrix s contain all ones.

Examples Check the Linf-norm scaling of a filter.

% Create filter design specifications
hs = fdesign.lowpass;
object.
hd = ellip(hs); % Design an elliptic sos filter
scale(hd,'Linf');
s = scalecheck(hd,'Linf')

Or, in another form:

[b,a]=ellip(10,.5,20,0.5);

[s,g]=tf2sos(b,a);

hd=dfilt.df1sos(s,g)

hd =

FilterStructure: 'Direct-Form I, Second-Order Sections'

Arithmetic: 'double'

sosMatrix: [5x6 double]

ScaleValues: [6x1 double]

PersistentMemory: false

States: [1x1 filtstates.dfiir]

1x1 struct array with no fields.

scalecheck(hd,'Linf')

ans =

0.7631 0.9627 0.9952 0.9994 1.0000

See Also norm, reorder, scale, scaleopts

2-1186

scaleopts

Purpose Options for scaling SOS filter

Syntax opts = scaleopts(hd)

Description opts = scaleopts(hd) uses the current settings in the filter hd to
create an options object opts that contains specified scaling options for
second-order section scaling. You can pass opts to the scale method as
an input argument to apply scaling settings to a second-order filter.

Within opts, the scaling options object returned by scaleopts, you
can set the following properties:

Parameter Default
Description and Valid
Value

MaxNumerator 2 Maximum allowed value
for numerator coefficients.

MaxScaleValue No default value Maximum allowed scale
values. The filter applies
the MaxScaleValue
limit only when you set
ScaleValueConstraint
to a value other than unit.
Setting MaxScaleValue
to a numerical value
automatically changes the
ScaleValueConstraint
setting to none.

NumeratorConstraint none Specifies whether
and how to constrain
numerator coefficient
values. Options are none,
normalize, po2, and
unit,

2-1187

scaleopts

Parameter Default
Description and Valid
Value

OverflowMode wrap Sets the way the filter
handles arithmetic
overflow situations
during scaling. Choose
one ofwrap or saturate or
satall.

ScaleValueConstraint unit Specify whether to
constrain the filter
scale values, and how
to constrain them. Valid
options are none, po2, and
unit

When you set the properties of opts and then use opts as an input
argument to scale(hd,opts), scale applies the settings in opts to
scale hd.

Examples From a filter hd, you can create an options scaling object that contains
the scaling options settings you require.

[b,a]=ellip(10,.5,20,0.5);
[s,g]=tf2sos(b,a);
hd=dfilt.df1sos(s,g)
opts=scaleopts(hd)

opts =

MaxNumerator: 2
NumeratorConstraint: 'none'

OverflowMode: 'wrap'
ScaleValueConstraint: 'unit'

MaxScaleValue: 'Not used'

See Also cumsec, norm, reorder, scale, scalecheck

2-1188

set2int

Purpose Configure filter for integer filtering

Syntax set2int(h)
set2int(h,coeffwl)
set2int(...,inwl)
g = set2int(...)

Description These sections apply to both discrete-time (dfilt) and multirate
(mfilt) filters.

set2int(h) scales the filter coefficients to integer values and sets the
filter coefficient and input fraction lengths to zero.

set2int(h,coeffwl) uses the number of bits specified by coeffwl as
the word length it uses to represent the filter coefficients.

set2int(...,inwl) uses the number of bits specified by coeffwl as the
word length it uses to represent the filter coefficients and the number of
bits specified by inwl as the word length to represent the input data.

g = set2int(...) returns the gain g introduced into the filter by
scaling the filter coefficients to integers. g is always calculated to be a
power of 2.

Note set2int does not work with CIC decimators or interpolators
because they do not have coefficients.

Examples These examples demonstrate some uses and ideas behind set2int.

The second parts of both examples depend on the following — after
you filter a set of data, the input data and output data cover the same
range of values, unless the filter process introduces gain in the output.
Converting your filter object to integer form, and then filtering a set of
data, does introduce gain into the system. When the examples refer to
resetting the output to the same range as the input, the examples are
accounting for this added gain feature.

2-1189

set2int

Discrete-Time Filter Example

Two parts comprise this example. Part 1 compares the step response of
an FIR filter in both the fractional and integer filter modes. Fractional
mode filtering is essentially the opposite of integer mode. Integer mode
uses a filter which has coefficients represented by integers. Fractional
mode filters have coefficients represented in fractional form (nonzero
fraction length).

b = firrcos(100,.25,.25,2,'rolloff','sqrt');
hd = dfilt.dffir(b);
hd.Arithmetic = 'fixed';
hd.InputFracLength = 0; % Integer inputs.
x = ones(100,1);
yfrac = filter(hd,x); % Fractional mode output.
g = set2int(hd); % Convert to integer coefficients.
yint = filter(hd,x); % Integer mode output.

Note that yint and yfrac are fi objects. Later in this example, you
use the fi object properties WordLength and FractionLength to work
with the output data.

Now use the gain g to rescale the output from the integer mode filter
operation.

yints = double(yint)/g;

Verify that the scaled integer output is equal to the fractional output.

max(abs(yints-double(yfrac)))

In part 2 , the example reinterprets the output binary data, putting
the input and the output on the same scale by weighting the most
significant bits in the input and output data equally.

WL = yint.WordLength;
FL = yint.Fractionlength + log2(g);
yints2 = fi(zeros(size(yint)),true,WL,FL);
yints2.bin = yint.bin;

2-1190

set2int

max(abs(double(yints2)-double(yfrac)))

Multirate Filter Example

This two-part example starts by comparing the step response of a
multirate filter in both fractional and integer modes. Fractional mode
filtering is essentially the opposite of integer mode. Integer mode uses a
filter which has coefficients represented by integers. Fractional mode
filters have coefficients in fractional form with nonzero fraction lengths.

hm = mfilt.firinterp;
hm.Arithmetic = 'fixed';
hm.InputFracLength = 0; % Integer inputs.
x = ones(100,1);
yfrac = filter(hm,x); % Fractional mode output.
g = set2int(hm); %Convert to integer coefficients.
yint = filter(hm,x); % Integer mode output.

Note that yint and yfrac are fi objects. In part 2 of this example,
you use the fi object properties WordLength and FractionLength to
work with the output data.

Now use the gain g to rescale the output from the integer mode filter
operation.

yints = double(yint)/g;

Verify that the scaled integer output is equal to the fractional output.

max(abs(yints-double(yfrac)))

Part 2 demonstrates reinterpreting the output binary data by using the
properties of yint to create a scaled version of yint named yints2.
This process puts yint and yints2 on the same scale by weighing the
most significant bits of each object equally.

wl = yint.wordlength;
fl = yint.fractionlength + log2(g);
yints2 = fi(zeros(size(yint)),true,wl,fl);
yints2.bin = yint.bin;

2-1191

set2int

max(abs(double(yints2)-double(yfrac)))

See Also mfilt

2-1192

setspecs

Purpose Specifications for filter specification object

Syntax setspecs(d,specvalue1,specvalue2,...)
setspecs(d,Specification,specvalue1,specvalue2,...)
setspecs(...fs)
setspecs(...,inputunits)

Description setspecs(d,specvalue1,specvalue2,...) sets the specifications
in the order that they appear in the Specification property for the
design object d.

setspecs(d,Specification,specvalue1,specvalue2,...) lets you
change the specifications for the object and set values for the new
specifiers. When you already have a filter specifications object, this
syntax lets you change the Specification string and the associated
specification values for the object, rather than recreating the object
to change it.

setspecs(...fs) sets the fs. If you choose to specify the fs, it must be
immediately after you provide all of the specifications for the current
Specification. Refer to Examples to see this being used.

setspecs(...,inputunits) specifies the inputunits option allows
you to specify your filter magnitude specification values in different
units. inputunits can be either of these strings:

• linear — to indicate that your input specification values represent
linear units, such as decimal values for the filter feature locations
when you select normalized sampling frequency.

• squared — indicating that your input specification values represent
squared magnitude values, usually decibels. This is the default
value. When you omit the inputunits argument, setspecs assumes
all specification values are in square magnitude form.

You are not required to provide fs, the sampling frequency, as an input
when you use the inputunits option. As you see from the syntax
options, the inputunits option must be the rightmost input argument
in the syntax — inputunits must be passed as the final input.

2-1193

setspecs

Examples To demonstrate using setspecs, the following examples show how to
use various syntax forms to set the values in filter specifications objects.

Example 1

Create a lowpass design object d using filter order and a cutoff value
for the location of the edge of the passband. Then change the cutoff
and order specifications of d.

d = fdesign.lowpass('n,fc')

d =

ResponseType: 'Lowpass with cutoff'
Specification: 'N,Fc'

Description: {2x1 cell}
NormalizedFrequency: true

Fs: 'Normalized'
FilterOrder: 10

Fcutoff: 0.5000

setspecs(d, 20, .4);

d =

ResponseType: 'Lowpass with cutoff'
Specification: 'N,Fc'

Description: {2x1 cell}
NormalizedFrequency: true

Fs: 'Normalized'
FilterOrder: 20

Fcutoff: 0.4000

Example 2

Now specify a sampling frequency after you make d.

d = fdesign.lowpass('n,fc')

2-1194

setspecs

d =

ResponseType: 'Lowpass with cutoff'
Specification: 'N,Fc'

Description: {2x1 cell}
NormalizedFrequency: true

Fs: 'Normalized'
FilterOrder: 10

Fcutoff: 0.5000

setspecs(d, 20, 4, 20);
d

d =

ResponseType: 'Lowpass with cutoff'
Specification: 'N,Fc'

Description: {2x1 cell}
NormalizedFrequency: false

Fs: 20
FilterOrder: 20

Fcutoff: 4

Example 3

This example uses the inputunits argument to change from the default
setting of square to linear unit. Start with the default lowpass design
object that specifies the edge locations for the passband and stopband,
and the desired attenuation in the passbands and stopbands.

d=fdesign.lowpass

d =

ResponseType: 'Minimum-order lowpass'
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}

2-1195

setspecs

NormalizedFrequency: true
Fs: 'Normalized'

Fpass: 0.4500
Fstop: 0.5500
Apass: 1
Astop: 60

Convert to linear input values and reset the filter spec for d at the same
time. With the linear argument included, the inputs for the response
features now need to be in linear units.

setspecs(d,.4,.5,.1,.05,'linear')
d

d =

ResponseType: 'Minimum-order lowpass'
Specification: 'Fp,Fst,Ap,Ast'

Description: {4x1 cell}
NormalizedFrequency: true

Fs: 'Normalized'
Fpass: 0.4000
Fstop: 0.5000
Apass: 1.7430
Astop: 26.0206

Example 4

Finally, use setspecs to change the Specification string and apply
new filter specifications to d.

d=fdesign.decim(3)

d =

ResponseType: 'Minimum-order nyquist'

Specification: 'TW,Ast'

Description: {2x1 cell}

DecimationFactor: 3

2-1196

setspecs

NormalizedFrequency: true

Fs: 'Normalized'

TransitionWidth: 0.1000

Astop: 80

setspecs(d,'n,ast',16,70)

d

d =

ResponseType: 'Nyquist with filter order and stopband attenuation'

Specification: 'N,Ast'

Description: {2x1 cell}

DecimationFactor: 3

NormalizedFrequency: true

Fs: 'Normalized'

PolyphaseLength: 16

Astop: 70

See Also designmethods, fdesign.bandpass, fdesign.bandstop,
fdesign.decimator, fdesign.halfband, fdesign.highpass,
fdesign.interpolator, fdesign.lowpass, fdesign.nyquist,
fdesign.rsrc

2-1197

sos

Purpose Convert quantized filter to second–order sections (SOS) form

Syntax Hq2 = sos(Hq)
Hq2 = sos(Hq, order)
Hq2 = sos(Hq, order, scale)

Description Hq2 = sos(Hq) returns a quantized filter Hq2 that has second-order
sections and the dft2 structure. Use the same optional arguments used
in tf2sos.

Hq2 = sos(Hq, order) specifies the order of the sections in Hq2, where
order is either of the following strings:

• 'down' — to order the sections so the first section of Hq2 contains
the poles closest to the unit circle (L∞ norm scaling)

• 'up' — to order the sections so the first section of Hq2 contains the
poles farthest from the unit circle (L2 norm scaling and the default)

Hq2 = sos(Hq, order, scale) also specifies the desired scaling of
the gain and numerator coefficients of all second-order sections, where
scale is one of the following strings:

• 'none' — to apply no scaling (default)

• 'inf' — to apply infinity-norm scaling

• 'two' — to apply 2-norm scaling

Use infinity-norm scaling in conjunction with up-ordering to minimize
the probability of overflow in the filter realization. Consider using
2-norm scaling in conjunction with down-ordering to minimize the peak
round-off noise.

When Hq is a fixed-point filter, the filter coefficients are normalized so
that the magnitude of the maximum coefficient in each section is 1. The
gain of the filter is applied to the first scale value of Hq2.

sos uses the direct form II transposed (dft2) structure to implement
second- order section filters.

2-1198

sos

Examples [b,a]=butter(8,.5);
Hq = dfilt.df2t(b,a);
Hq.arithmetic = 'fixed';
Hq1 = sos(Hq)

See Also convert, dfilt

tf2sos in Signal Processing Toolbox documentation

2-1199

specifyall

Purpose Fixed-point scaling modes in direct-form FIR filter

Syntax specifyall(hd)
specifyall(hd,false)
specifyall(hd,true)

Description specifyall sets all of the autoscale property values of direct-form
FIR filters to false and all *modes of the filters to SpecifyPrecision.
In this table, you see the results of using specifyall with direct-form
FIR filters.

Property Name Default
Setting After
Applying specifyall

CoeffAutoScale true false

OutputMode AvoidOverflow SpecifyPrecision

ProductMode FullPrecision SpecifyPrecision

AccumMode KeepMSB SpecifyPrecision

RoundMode convergent convergent

OverflowMode wrap wrap

specifyall(hd) gives you maximum control over all settings in a filter
hd by setting all of the autoscale options that are true to false, turning
off all autoscaling and resetting all modes — OutputMode, ProductMode,
and AccumMode — to SpecifyPrecision. After you use specifyall,
you must supply the property values for the mode- and scaling related
properties.

specifyall provides an alternative to changing all these properties
individually. Do note that specifyall changes all of the settings; to set
some but not all of the modes, set each property as you require.

specifyall(hd,false) performs the opposite operation of
specifyall(hd) by setting all of the autoscale options to true; all
of the modes to their default values; and hiding the fraction length

2-1200

specifyall

properties in the display, meaning you cannot access them to set them
or view them.

specifyall(hd,true) is equivalent to specifyall(hd).

Examples This examples demonstrates using specifyall to provide access to
all of the fixed-point settings of an FIR filter implemented with the
direct-form structure. Notice the displayed property values shown
after you change the filter to fixed-point arithmetic, then after you use
specifyall to disable all of the automatic filter scaling and reset the
mode values.

b = fircband(12,[0 0.4 0.5 1],[1 1 0 0],[1 0.2],{'w''c'});
hd = dfilt.dffir(b);
hd.arithmetic = 'fixed'
hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [1x13 double]

PersistentMemory: false
States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: 'true'

Signed: 'on'

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'AvoidOverflow'

ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'
AccumWordLength: 40

2-1201

specifyall

CastBeforeSum: 'on'

RoundMode: 'convergent'
OverflowMode: 'wrap'

InheritSettings: 'off'

specifyall(hd)
hd

hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [1x13 double]

PersistentMemory: false
States: [1x1 embedded.fi]

CoeffWordLength: 16
CoeffAutoScale: false
NumFracLength: 16

Signed: true

InputWordLength: 16
InputFracLength: 15

OutputWordLength: 16
OutputMode: 'SpecifyPrecision'

OutputFracLength: 11

ProductMode: 'SpecifyPrecision'
ProductWordLength: 32
ProductFracLength: 31

AccumMode: 'SpecifyPrecision'
AccumWordLength: 40
AccumFracLength: 31

2-1202

specifyall

CastBeforeSum: true

RoundMode: 'convergent'
OverflowMode: 'wrap'

InheritSettings: false

The mode properties InputMode, ProductMode, and AccumMode now
have the value SpecifyPrecision and the fraction length properties
appear in the display. Now you use the properties (InputFracLength,
ProdFracLength, AccumFracLength) to set the precision the
filter applies to the input, product, and accumulator operations.
CoeffAutoScale switches to false, meaning autoscaling of the filter
coefficients will not be done to prevent overflows. None of the other
filter properties change when you apply specifyall.

See Also double, reffilter

fi, fimath in Fixed-Point Toolbox

2-1203

stepz

Purpose Step response for filter

Syntax [h,t] = stepz(ha)
stepz(ha)
[h,t] = stepz(hm)
stepz(hm)

Description The next sections describe common stepz operation with adaptive
and multirate filters. For more input options and for information
about using stepz with discrete-time filters, refer to stepz in Signal
Processing Toolbox.

Adaptive Filters

For adaptive filters, stepz returns the instantaneous zero-phase
response based on the current filter coefficients.

[h,t] = stepz(ha) returns the step response h of the multirate filter
ha. The length of column vector h is the length of the impulse response
of ha. Returned vector t contains the time samples at which stepz
evaluated the step response. stepz returns h as a matrix when ha is a
vector of filters. Each column of the matrix corresponds to one filter in
the vector.

stepz(ha) displays the filter step response in the Filter Visualization
Tool (FVTool).

Multirate Filters

[h,t] = stepz(hm) returns the step response h of the multirate filter
hm. The length of column vector h is the length of the impulse response
of hm. The vector t contains the time samples at which stepz evaluated
the step response. stepz returns h as a matrix when hm is a vector of
filters. Each column of the matrix corresponds to one filter in the vector.

stepz(hm) displays the step response in the Filter Visualization Tool
(FVTool).

Note that the response is computed relative to the rate at which the
filter is running. If a sampling frequency is specified, it is assumed that
the filter is running at that rate.

2-1204

stepz

Note that the multirate filter delay response is computed relative to the
rate at which the filter is running. When you specify fs (the sampling
rate) as an input argument, stepz assumes the filter is running at
that rate.

For multistage cascades, stepz forms a single-stage multirate filter that
is equivalent to the cascade and computes the response relative to the
rate at which the equivalent filter is running. stepz does not support
all multistage cascades. Only cascades for which it is possible to derive
an equivalent single-stage filter are allowed for analysis.

As an example, consider a two-stage interpolator where the first
stage has an interpolation factor of 2 and the second stage has an
interpolation factor of 4. An equivalent single-stage filter with an
overall interpolation factor of 8 can be found. stepz uses the equivalent
filter for the analysis. If you specify a sampling frequency fs as an
input argument to stepz, the function interprets fs as the rate at which
the equivalent filter is running.

See Also freqz, impz

2-1205

tf2ca

Purpose Transfer function to coupled allpass

Syntax [d1,d2] = tf2ca(b,a)
[d1,d2] = tf2ca(b,a)

Description [d1,d2] = tf2ca(b,a) where b is a real, symmetric vector of
numerator coefficients and a is a real vector of denominator coefficients,
corresponding to a stable digital filter, returns real vectors d1 and d2
containing the denominator coefficients of the allpass filters H1(z) and
H2(z) such that

representing a coupled allpass decomposition.

[d1,d2] = tf2ca(b,a) where b is a real, antisymmetric vector of
numerator coefficients and a is a real vector of denominator coefficients,
corresponding to a stable digital filter, returns real vectors d1 and d2
containing the denominator coefficients of the allpass filters H1(z) and
H2(z) such that

In some cases, the decomposition is not possible with real H1(z) and
H2(z). In those cases a generalized coupled allpass decomposition may
be possible, whose syntax is

[d1,d2,beta] = tf2ca(b,a)

to return complex vectors d1 and d2 containing the denominator
coefficients of the allpass filters H1(z) and H2(z), and a complex scalar
beta, satisfying |beta| = 1, such that

representing the generalized allpass decomposition.

2-1206

tf2ca

In the above equations, H1(z) and H2(z) are real or complex allpass
IIR filters given by

where D1(z) and D2(z) are polynomials whose coefficients are given by
d1 and d2.

Note A coupled allpass decomposition is not always possible.
Nevertheless, Butterworth, Chebyshev, and Elliptic IIR filters, among
others, can be factored in this manner. For details, refer to Signal
Processing Toolbox User’s Guide.

Examples [b,a]=cheby1(9,.5,.4);

[d1,d2]=tf2ca(b,a); % TF2CA returns denominators of the allpass.

num = 0.5*conv(fliplr(d1),d2)+0.5*conv(fliplr(d2),d1);

den = conv(d1,d2); % Reconstruct numerator and denonimator.

max([max(b-num),max(a-den)]) % Compare original and reconstructed

% numerator and denominators.

See Also ca2tf, cl2tf, iirpowcomp, latc2tf, tf2latc

2-1207

tf2cl

Purpose Transfer function to coupled allpass lattice

Syntax [k1,k2] = tf2cl(b,a)
[k1,k2] = tf2cl(b,a)

Description [k1,k2] = tf2cl(b,a) where b is a real, symmetric vector of
numerator coefficients and a is a real vector of denominator coefficients,
corresponding to a stable digital filter, will perform the coupled allpass
decomposition

of a stable IIR filter H(z) and convert the allpass transfer functions
H1(z) and H2(z) to a coupled lattice allpass structure with coefficients
given in vectors k1 and k2.

[k1,k2] = tf2cl(b,a) where b is a real, antisymmetric vector of
numerator coefficients and a is a real vector of denominator coefficients,
corresponding to a stable digital filter, performs the coupled allpass
decomposition

of a stable IIR filter H(z) and converts the allpass transfer functions
H1(z) and H2(z) to a coupled lattice allpass structure with coefficients
given in vectors k1 and k2.

In some cases, the decomposition is not possible with real H1(z) and
H2(z). In those cases, a generalized coupled allpass decomposition may
be possible, using the command syntax

[k1,k2,beta] = tf2cl(b,a)

to perform the generalized allpass decomposition of a stable IIR filter
H(z) and convert the complex allpass transfer functions H1(z) and H2(z)
to corresponding lattice allpass filters

2-1208

tf2cl

where beta is a complex scalar of magnitude equal to 1.

Note Coupled allpass decomposition is not always possible.
Nevertheless, Butterworth, Chebyshev, and Elliptic IIR filters, among
others, can be factored in this manner. For details, refer to Signal
Processing Toolbox User’s Guide.

Examples [b,a]=cheby1(9,.5,.4);

[k1,k2]=tf2cl(b,a); % Get the reflection coeffs. for the lattices.

[num1,den1]=latc2tf(k1,'allpass'); % Convert each allpass lattice

[num2,den2]=latc2tf(k2,'allpass'); % back to transfer function.

num = 0.5*conv(num1,den2)+0.5*conv(num2,den1);

den = conv(den1,den2); % Reconstruct numerator and denonimator.

max([max(b-num),max(a-den)]) % Compare original and reconstructed

% numerator and denominators.

See Also ca2tf, cl2tf, iirpowcomp

latc2tf, tf2ca, tf2latc in Signal Processing Toolbox

2-1209

validstructures

Purpose Structures for specification object with design method

Syntax validstructures(d)
validstructures(d,'designmethod')
c = validstructures(d,'designmethod')

Description validstructures(d) returns the list of structures for all design
methods that are available for d.

validstructures(d,'designmethod') returns a list of the filter
structures available for the specification object d and the design method
in designmethod. Knowing which structures apply to your combination
of design method and specification makes deciding on a filter structure
to implement easier.

To determine the available structures, validstructures considers
the filter response, such as lowpass or bandstop. It also considers the
specifications you use to define the response, such as filter order or
stopband attenuation, because changing the filter specifications often
changes the available structures.

c = validstructures(d,'designmethod') returns the output cell
array c that contains the filter structures as character strings.

Examples These examples demonstrate some results of applying validstructures
to a combination of a specification object and a design method.

Example 1

An interpolator that uses the Polyphase Length and Stopband
Attenuation options to design the filter.

d=fdesign.interp(6,'PL,Ast',20,65)

d =

Response: 'Lowpass interpolator'

Specification: 'PL,Ast'

Description: {'Polyphase Length';'Stopband Attenuation (dB)'}

2-1210

validstructures

InterpolationFactor: 6

NormalizedFrequency: true

PolyphaseLength: 20

Astop: 65

designmethods(d)

FIR Design Methods for class fdesign.interp (PL,Ast):

kaiserwin

validstructures(d,'kaiserwin')

ans =

'firinterp' 'fftfirinterp'

Now you can specify the filter structure when you design the filter hm.

hm=design(d,'kaiserwin','FilterStructure','firinterp')

hm =

FilterStructure: 'Direct-Form FIR Polyphase
Interpolator'

Arithmetic: 'double'
Numerator: [1x120 double]

InterpolationFactor: 6
PersistentMemory: false

Example 2

A CIC decimator is used as a specification object. Because the object is
a decimator and the structure is defined as CIC, the only valid structure
is cicdecim.

d=fdesign.cicdecim(5)

2-1211

validstructures

d =

Response: 'CIC Decimator'
Specification: 'Fp,Ast'

Description: {'Passband Frequency';'Aliasing
Attenuation(dB)'}

DifferentialDelay: 5
NormalizedFrequency: true

Fpass: 0.01
Astop: 60

designmethods(d)

FIR Design Methods for class fdesign.cicdecim (Fp,Ast):

multisection

c=validstructures(d,'multirate')

c =

'cicdecim'

Example 3

This default highpass specification object has more design methods
available, however, changing the design method changes the valid filter
structures.

d=fdesign.highpass;

designmethods(d)

Design Methods for class fdesign.highpass (Fst,Fp,Ast,Ap):

butter

cheby1

cheby2

ellip

2-1212

validstructures

equiripple

ifir

kaiserwin

validstructures(d,'equiripple')

'dffir' 'dffirt' 'dfsymfir' 'dfasymfir' 'fftfir'

Using the cheby2 method results in both IIR filter structures and
cascade allpass structure options..

c=validstructures(d,'cheby2')

c =

'df1sos' 'df2sos' 'df1tsos' 'df2tsos' 'cascadeallpass'

'cascadewdfallpass'

Example 4

Multirate filters support validstructures.

d=fdesign.rsrc(4,5);
designmethods(d)

FIR Design Methods for class fdesign.rsrc (TW,Ast):

equiripple
kaiserwin

validstructures(d,'kaiserwin')

'firinterp' 'fftfirinterp'

See Also design, designmethods, designopts, fdesign

2-1213

window

Purpose FIR filter using windowed impulse response

Syntax h = window(d,fcnhndl,fcnarg)
h = window(d,win)

description h = window(d,fcnhndl,fcnarg) designs an FIR filter using the
specifications in filter specification object d. Depending on the
specification type of d, the returned filter is either a single-rate digital
filter — a dfilt, or a multirate digital filter — an mfilt.

fcnhndl is a handle to a filter design function that returns a window
vector, such as the hamming or blackman functions. fcnarg is an
optional argument that returns a window. You pass the function to
window. Refer to example 1 in the following section to see the function
argument used to design the filter.

h = window(d,win) designs a filter using the vector you supply in win.
The length of vector win must be the same as the impulse response of
the filter, which is equal to the filter order plus one. Example 2 shows
this being done.

Examples These examples design filters using the two design techniques of
specifying a function handle or passing a window vector as an input
argument.

Example 1

Use a function handle and optional input arguments to design a
multirate filter. We use a function handle to the function Kaiser to
provide the window. Since this example creates a decimating filter
specifications object, window returns a multirate filter.

d = fdesign.decim(4,'pl',14);
hm = window(d,@kaiser,2.5);
fvtool(hm)

2-1214

window

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Example 2

Use a window vector provided by the hamming window design function.
For this example, the design object is a Nyquist filter, thus window
returns hd as a discrete-time filter.

d = fdesign.nyquist(5,'n',150);
hd = window(d,hamming(151));
fvtool(hd)

2-1215

window

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−160

−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

See Also firls, kaiserwin

2-1216

zerophase

Purpose Zero-phase response for filter

Syntax zerophase(ha)
[hr,w] = zerophase(ha,n)
[hr,w] = zerophase(...,f)
zerophase(hd)
[hr,w] = zerophase(hd,n)
[hr,w] = zerophase(...,f)
zerophase(hm)
[hr,w] = zerophase(hm,n)
[hr,w] = zerophase(...,f)
[hr,w] = zerophase(...,fs)

Description The next sections describe common zerophase operation with adaptive,
discrete-time, and multirate filters. For more input options, refer to
zerophase in Signal Processing Toolbox.

Adaptive Filters

For adaptive filters, zerophase returns the instantaneous zero-phase
response based on the current filter coefficients.

zerophase(ha) displays the zero-phase response of ha in the Filter
Visualization Tool (FVTool).

[hr,w] = zerophase(ha,n) returns length n vectors hr and w
containing the instantaneous zero-phase response of the adaptive filter
ha, and the frequencies in radians at which zerophase evaluated the
response. The zero-phase response is evaluated at n points equally
spaced around the upper half of the unit circle. For an FIR filter where
n is a power of two, the computation is done faster using FFTs. If n is
not specified, it defaults to 8192.

[hr,w] = zerophase(ha) returns a matrix hr if ha is a vector of filters.
Each column of the matrix corresponds to each filter in the vector. If
you provide a row vector of frequency points f as an input argument,
each row of hr corresponds to one filter in the vector.

2-1217

zerophase

Discrete-Time Filters

zerophase(hd) displays the zero-phase response of hd in the Filter
Visualization Tool (FVTool).

[hr,w] = zerophase(hd,n) returns length n vectors hr and w
containing the instantaneous zero-phase response of the adaptive filter
hd, and the frequencies in radians at which zerophase evaluated the
response. The zero-phase response is evaluated at n points equally
spaced around the upper half of the unit circle. For an FIR filter where
n is a power of two, the computation is done faster using FFTs. If n is
not specified, it defaults to 8192.

[hr,w] = zerophase(hd) returns a matrix hr if hd is a vector of filters.
Each column of the matrix corresponds to each filter in the vector. If
you provide a row vector of frequency points f as an input argument,
each row of hr corresponds to one filter in the vector.

Multirate Filters

zerophase(hm) displays the zero-phase response of hd in the Filter
Visualization Tool (FVTool).

[hr,w] = zerophase(hm,n) returns length n vectors hr and w
containing the instantaneous zero-phase response of the adaptive filter
hm, and the frequencies in radians at which zerophase evaluated the
response. The zero-phase response is evaluated at n points equally
spaced around the upper half of the unit circle. For an FIR filter where
n is a power of two, the computation is done faster using FFTs. If n is
not specified, it defaults to 8192.

[hr,w] = zerophase(hm) returns a matrix hr if hm is a vector of filters.
Each column of the matrix corresponds to each filter in the vector. If
you provide a row vector of frequency points f as an input argument,
each row of hr corresponds to one filter in the vector.

Note that the response is computed relative to the rate at which the
filter is running. If a sampling frequency is specified, it is assumed that
the filter is running at that rate.

2-1218

zerophase

Note that the multirate filter delay response is computed relative to the
rate at which the filter is running. When you specify fs (the sampling
rate) as an input argument, zerophase assumes the filter is running
at that rate.

For multistage cascades, zerophase forms a single-stage multirate filter
that is equivalent to the cascade and computes the response relative to
the rate at which the equivalent filter is running. zerophase does not
support all multistage cascades. Only cascades for which it is possible
to derive an equivalent single-stage filter are allowed for analysis.

As an example, consider a two-stage interpolator where the first
stage has an interpolation factor of 2 and the second stage has an
interpolation factor of 4. An equivalent single-stage filter with an
overall interpolation factor of 8 can be found. zerophase uses the
equivalent filter for the analysis. If a sampling frequency fs is specified
as an input argument to zerophase, the function interprets fs as the
rate at which the equivalent filter is running.

See Also freqz, fvtool, grpdelay, impz, mfilt, phasez, zerophase, zplane

2-1219

zpkbpc2bpc

Purpose Zero-pole-gain complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the complex bandpass prototype by applying
a first-order complex bandpass to complex bandpass frequency
transformation.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The original lowpass filter is
given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places two features of an original
filter, located at frequencies Wo1 and Wo2, at the required target
frequency locations, Wt1, and Wt2 respectively. It is assumed that Wt2
is greater than Wt1. In most of the cases the features selected for the
transformation are the band edges of the filter passbands. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the
deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

This transformation can also be used for transforming other types of
filters; e.g., complex notch filters or resonators can be repositioned at
two distinct desired frequencies at any place around the unit circle;
e.g., in the adaptive system.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3,0.1,30,0.409);

Create a complex passband from 0.25 to 0.75:

2-1220

zpkbpc2bpc

[b, a] = iirlp2bpc(b,a,0.5,[0.25,0.75]);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkbpc2bpc(z,p,k,[0.25, 0.75],[-0.75, -0.25]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Comparing the filters in FVTool shows the example results. Use the
features in FVTool to check the filter coefficients, or other filter analyses.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Filter
Target Filter with Complex Passband

2-1221

zpkbpc2bpc

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

Wo Frequency value to be transformed from the
prototype filter

Wt Desired frequency location in the transformed
target filter

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1
corresponding to half the sample rate.

See Also zpkftransf, allpassbpc2bpc, iirbpc2bpc

2-1222

zpkftransf

Purpose Zero-pole-gain frequency transformation

Syntax [Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen)

Description [Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen) returns
zeros, Z2, poles, P2, and gain factor, K2, of the transformed lowpass
digital filter. The prototype lowpass filter is given with zeros, Z, poles,
P, and gain factor, K. If AllpassDen is not specified it will default to 1.
If neither AllpassNum nor AllpassDen is specified, then the function
returns the input filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3,0.1,30,0.409);

[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);

[z2, p2, k2] = zpkftransf(roots(b),roots(a),b(1),AlpNum,AlpDen);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

After transforming the filter, you get the response shown in the figure,
where the passband has been shifted towards zero.

2-1223

zpkftransf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype IIR Filter
Transformed Filter

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

FTFNum Numerator of the mapping filter

FTFDen Denominator of the mapping filter

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

See Also iirftransf

2-1224

zpklp2bp

Purpose Zero-pole-gain lowpass to bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the real lowpass prototype by applying a second-order
real lowpass to real bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter,
located at frequency -Wo, at the required target frequency location,
Wt1, and the second feature, originally at +Wo, at the new location,
Wt2. It is assumed that Wt2 is greater than Wt1. This transformation
implements the "DC Mobility," which means that the Nyquist feature
stays at Nyquist, but the DC feature moves to a location dependent
on the selection of Wt.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation
is not restricted only to the cutoff frequency of an original lowpass filter.
In general it is possible to select any feature; e.g., the stopband edge,
the DC, the deep minimum in the stopband, or other ones.

Real lowpass to bandpass transformation can also be used for
transforming other types of filters; e.g., real notch filters or resonators
can be easily doubled and positioned at two distinct, desired frequencies.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

2-1225

zpklp2bp

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2bp(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

Wo Frequency value to be transformed from the prototype
filter

Wt Desired frequency location in the transformed target
filter

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also zpkftransf, allpasslp2bp, iirlp2bp

References Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

2-1226

zpklp2bp

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems,
Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium
on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

2-1227

zpklp2bpc

Purpose Zero-pole-gain lowpass to complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the real lowpass prototype by applying a first-order
real lowpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter,
located at frequency -Wo, at the required target frequency location, Wt1,
and the second feature, originally at +Wo, at the new location, Wt2. It is
assumed that Wt2 is greater than Wt1.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation
is not restricted only to the cutoff frequency of an original lowpass filter.
In general it is possible to select any feature; e.g., the stopband edge,
the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming
other types of filters; e.g., real notch filters or resonators can be doubled
and positioned at two distinct desired frequencies at any place around
the unit circle forming a pair of complex notches/resonators. This
transformation can be used for designing bandpass filters for radio
receivers from the high-quality prototype lowpass filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

2-1228

zpklp2bpc

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2bpc(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

Wo Frequency value to be transformed from the
prototype filter. It should be normalized to be
between -1 and 1, with 1 corresponding to half the
sample rate.

Wt Desired frequency locations in the transformed target
filter. They should be normalized to be between 0
and 1, with 1 corresponding to half the sample rate.

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

See Also zpkftransf, allpasslp2bpc, iirlp2bpc

2-1229

zpklp2bs

Purpose Zero-pole-gain lowpass to bandstop frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the real lowpass prototype by applying a second-order
real lowpass to real bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter,
located at frequency -Wo, at the required target frequency location,
Wt1, and the second feature, originally at +Wo, at the new location,
Wt2. It is assumed that Wt2 is greater than Wt1. This transformation
implements the "Nyquist Mobility," which means that the DC feature
stays at DC, but the Nyquist feature moves to a location dependent on
the selection of Wo and Wts.

Relative positions of other features of an original filter change in
the target filter. This means that it is possible to select two features
of an original filter, F1 and F2, with F1 preceding F2. After the
transformation feature F2 will precede F1 in the target filter. However,
the distance between F1 and F2 will not be the same before and after
the transformation.

Choice of the feature subject to the lowpass to bandstop transformation
is not restricted only to the cutoff frequency of an original lowpass filter.
In general it is possible to select any feature; e.g., the stopband edge,
the DC, the deep minimum in the stopband, or other ones.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);

2-1230

zpklp2bs

k = b(1);
[z2,p2,k2] = zpklp2bs(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

Wo Frequency value to be transformed from the prototype
filter

Wt Desired frequency location in the transformed target
filter

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also zpkftransf, allpasslp2bs, iirlp2bs

References Constantinides, A.G., “Spectral transformations for digital filters,”
IEEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”

2-1231

zpklp2bs

Proceedings 33rd Midwest Symposium on Circuits and Systems,
Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium
on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

2-1232

zpklp2bsc

Purpose Zero-pole-gain lowpass to complex bandstop frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bsc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bsc(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the real lowpass prototype by applying a first-order
real lowpass to complex bandstop frequency transformation.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter,
located at frequency -Wo, at the required target frequency location, Wt1,
and the second feature, originally at +Wo, at the new location, Wt2. It is
assumed that Wt2 is greater than Wt1. Additionally the transformation
swaps passbands with stopbands in the target filter.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation
is not restricted only to the cutoff frequency of an original lowpass filter.
In general it is possible to select any feature; e.g., the stopband edge,
the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming
other types of filters; e.g., real notch filters or resonators can be doubled
and positioned at two distinct desired frequencies at any place around
the unit circle forming a pair of complex notches/resonators.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3,0.1,30,0.409);

2-1233

zpklp2bsc

z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2bsc(z, p, k, 0.5, [0.2, 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

Wo Frequency value to be transformed from the
prototype filter. It should be normalized to be
between 0 and 1, with 1 corresponding to half the
sample rate.

Wt Desired frequency locations in the transformed target
filter. They should be normalized to be between -1
and 1, with 1 corresponding to half the sample rate.

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

See Also zpkftransf, allpasslp2bsc, iirlp2bsc

2-1234

zpklp2hp

Purpose Zero-pole-gain lowpass to highpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the real lowpass prototype by applying a first-order
real lowpass to real highpass frequency mapping. This transformation
effectively places one feature of an original filter, located at frequency
Wo, at the required target frequency location, Wt, at the same time
rotating the whole frequency response by half of the sampling frequency.
Result is that the DC and Nyquist features swap places.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with zeros, Z, poles, P, and the gain factor, K.

Relative positions of other features of an original filter change in
the target filter. This means that it is possible to select two features
of an original filter, F1 and F2, with F1 preceding F2. After the
transformation feature F2 will precede F1 in the target filter. However,
the distance between F1 and F2 will not be the same before and after
the transformation.

Choice of the feature subject to the lowpass to highpass transformation
is not restricted to the cutoff frequency of an original lowpass filter. In
general it is possible to select any feature; e.g., the stopband edge, the
DC, or the deep minimum in the stopband, or other ones.

Lowpass to highpass transformation can also be used for transforming
other types of filters; e.g., notch filters or resonators can change their
position in a simple way without designing them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);

2-1235

zpklp2hp

k = b(1);
[z2,p2,k2] = zpklp2hp(z, p, k, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

Wo Frequency value to be transformed from the prototype
filter

Wt Desired frequency location in the transformed target
filter

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also zpkftransf, allpasslp2hp, iirlp2hp

References Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”

2-1236

zpklp2hp

Proceedings 33rd Midwest Symposium on Circuits and Systems,
Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium
on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Frequency transformations for digital filters,”
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

2-1237

zpklp2lp

Purpose Zero-pole-gain lowpass to lowpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the real lowpass prototype by applying a first-order
real lowpass to real lowpass frequency mapping. This transformation
effectively places one feature of an original filter, located at frequency
Wo, at the required target frequency location, Wt.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with zeros, Z, poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation
is not restricted to the cutoff frequency of an original lowpass filter. In
general it is possible to select any feature; e.g., the stopband edge, the
DC, the deep minimum in the stopband, or other ones.

Lowpass to lowpass transformation can also be used for transforming
other types of filters; e.g., notch filters or resonators can change their
position in a simple way without designing them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2lp(z, p, k, 0.5, 0.25);

2-1238

zpklp2lp

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Using zpklp2lp creates the desired half band IIR filter with the
transformed features that you specify in the transformation function.
This figure shows the results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Filter (b,a)
Target Filter Transformed (z,p,k)

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

2-1239

zpklp2lp

Variable Description

Wo Frequency value to be transformed from the
prototype filter

Wt Desired frequency location in the transformed
target filter

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also zpkftransf, allpasslp2lp, iirlp2lp

References Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems,
Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.

Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium
on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Frequency transformations for digital filters,”
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

2-1240

zpklp2mb

Purpose Zero-pole-gain lowpass to M-band frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the real lowpass prototype by applying an Mth-order
real lowpass to real multibandpass frequency mapping. By default the
DC feature is kept at its original location.

[Z2,P2,K2,AllpassNum,AllpassDen] =
zpklp2mb(Z,P,K,Wo,Wt,Pass) allows you to specify an additional
parameter, Pass, which chooses between using the “DC Mobility” and
the "Nyquist Mobility". In the first case the Nyquist feature stays at its
original location and the DC feature is free to move. In the second
case the DC feature is kept at an original frequency and the Nyquist
feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter,
located at frequency Wo, at the required target frequency locations,
Wt1,...,WtM.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted
to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can be easily replicated at a

2-1241

zpklp2mb

number of required frequency locations. A good application would be
an adaptive tone cancellation circuit reacting to the changing number
and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'pass');
[z2,p2,k2] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));

The resulting multiband filter that replicates features from the
prototype appears in the figure shown. Note the accuracy of the
replication process.

2-1242

zpklp2mb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

Wo Frequency value to be transformed from the prototype
filter

Wt Desired frequency location in the transformed target
filter

Pass Choice ('pass'/'stop') of passband/stopband at DC,
'pass' being the default

Z2 Zeros of the target filter

2-1243

zpklp2mb

Variable Description

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also zpkftransf, allpasslp2mb, iirlp2mb

References Franchitti, J.C., “All-pass filter interpolation and frequency
transformation problems,” MSc Thesis, Dept. of Electrical and
Computer Engineering, University of Colorado, 1985.

Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation
and frequency transformation problem,” Proceedings 20th Asilomar
Conference on Signals, Systems and Computers, Pacific Grove,
California, pp. 164-168, November 1986.

Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7,
Reading, Massachusetts, Addison-Wesley, 1987.

Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur
Algorithm for frequency transformations, Linear Circuits, Systems and
Signal Processing: Theory and Application, C. J. Byrnes et al Eds,
Amsterdam: Elsevier, 1988.

2-1244

zpklp2mbc

Purpose Zero-pole-gain lowpass to complex M-band frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the real lowpass prototype by applying an Mth-order
real lowpass to complex multibandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with zeros, Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter,
located at frequency Wo, at the required target frequency locations,
Wt1,...,WtM.

Choice of the feature subject to this transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible
to select any feature, for example, the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

This transformation can also be used for transforming other types of
filters; e.g., to replicate notch filters and resonators at any required
location.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

2-1245

zpklp2mbc

[z1,p1,k1] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10);
[z2,p2,k2] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));

You could review the coefficients to compare the filters, but the
graphical comparison shown here is quicker and easier.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

However, looking at the coefficients in FVTool shows the complex
nature desired.

2-1246

zpklp2mbc

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

Wo Frequency value to be transformed from the
prototype filter. It should be normalized to be
between 0 and 1, with 1 corresponding to half the
sample rate.

Wt Desired frequency locations in the transformed
target filter. They should be normalized to be
between -1 and 1, with 1 corresponding to half the
sample rate.

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

See Also zpkftransf, allpasslp2mbc, iirlp2mbc

2-1247

zpklp2xc

Purpose Zero-pole-gain lowpass to complex N-point frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the real lowpass prototype by applying an Nth-order
real lowpass to complex multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with zeros, Z, poles, P, and gain factor, K.

Parameter N also specifies the number of replicas of the prototype
filter created around the unit circle after the transformation. This
transformation effectively places N features of an original filter, located
at frequencies Wo1,...,WoN, at the required target frequency locations,
Wt1,...,WtM.

Relative positions of other features of an original filter are the same
in the target filter for the Nyquist mobility and are reversed for the
DC mobility. For the Nyquist mobility this means that it is possible to
select two features of an original filter, F1 and F2, with F1 preceding
F2. Feature F1 will still precede F2 after the transformation. However,
the distance between F1 and F2 will not be the same before and after
the transformation. For DC mobility feature F2 will precede F1 after
the transformation.

Choice of the feature subject to this transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible
to select any feature; e.g., the stopband edge, the DC, the deep minimum
in the stopband, or other ones. The only condition is that the features
must be selected in such a way that when creating N bands around the
unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can be easily replicated at a
number of required frequency locations. A good application would be

2-1248

zpklp2xc

an adaptive tone cancellation circuit reacting to the changing number
and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xc(z, p, k, [-0.5 0.5], [-0.25 0.25]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Plotting the filters on the same axes lets you compare the results
graphically, shown here.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

2-1249

zpklp2xc

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

Wo Frequency values to be transformed from the
prototype filter. They should be normalized to be
between 0 and 1, with 1 corresponding to half the
sample rate.

Wt Desired frequency locations in the transformed target
filter. They should be normalized to be between -1
and 1, with 1 corresponding to half the sample rate.

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

See Also zpkftransf, allpasslp2xc, iirlp2xc

2-1250

zpklp2xn

Purpose Zero-pole-gain lowpass to N-point frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the real lowpass prototype by applying an Nth-order
real lowpass to real multipoint frequency transformation, where N is the
number of features being mapped. By default the DC feature is kept at
its original location.

[Z2,P2,K2,AllpassNum,AllpassDen] =
zpklp2xn(Z,P,K,Wo,Wt,Pass) allows you to specify an additional
parameter, Pass, which chooses between using the "DC Mobility" and
the "Nyquist Mobility". In the first case the Nyquist feature stays at its
original location and the DC feature is free to move. In the second
case the DC feature is kept at an original frequency and the Nyquist
feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with zeros, Z, poles, P, and gain factor, K.

Parameter N also specifies the number of replicas of the prototype
filter created around the unit circle after the transformation. This
transformation effectively places N features of an original filter, located
at frequencies Wo1,...,WoN, at the required target frequency locations,
Wt1,...,WtM.

Relative positions of other features of an original filter are the same
in the target filter for the Nyquist mobility and are reversed for the
DC mobility. For the Nyquist mobility this means that it is possible to
select two features of an original filter, F1 and F2, with F1 preceding
F2. Feature F1 will still precede F2 after the transformation. However,
the distance between F1 and F2 will not be the same before and after
the transformation. For DC mobility feature F2 will precede F1 after
the transformation.

2-1251

zpklp2xn

Choice of the feature subject to this transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible
to select any feature; e.g., the stopband edge, the DC, the deep minimum
in the stopband, or other ones. The only condition is that the features
must be selected in such a way that when creating N bands around the
unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can be easily replicated at a
number of required frequency locations. A good application would be
an adaptive tone cancellation circuit reacting to the changing number
and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3,0.1,30,0.409);

z = roots(b);

p = roots(a);

k = b(1);

[z2,p2,k2] = zpklp2xn(z, p, k, [-0.5 0.5], [-0.25 0.25], 'pass');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

2-1252

zpklp2xn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

As demonstrated by the figure, the target filter has the desired response
shape and values replicated from the prototype.

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

Wo Frequency value to be transformed from the
prototype filter

Wt Desired frequency location in the transformed target
filter

Pass Choice ('pass'/'stop') of passband/stopband at
DC, 'pass' being the default

2-1253

zpklp2xn

Variable Description

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassDen Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also zpkftransf, allpasslp2xn, iirlp2xn

References Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for
Flexible IIR Filter Design,” VII European Signal Processing Conference
(EUSIPCO’94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom,
September 1994.

Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order
frequency transformations for IIR filters,” 38th Midwest Symposium on
Circuits and Systems (MWSCAS’95), Rio de Janeiro, Brazil, August
1995.

2-1254

zpkrateup

Purpose Zero-pole-gain complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
being transformed from any prototype by applying an Nth-order
rateup frequency transformation, where N is the upsample ratio.
Transformation creates N equal replicas of the prototype filter frequency
response.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The original lowpass filter is
given with zeros, Z, poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

Upsample the prototype filter four times:

[z2,p2,k2] = zpkrateup(z, p, k, 4);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Applying the upsample process creates a bandpass filter, as shown here.

2-1255

zpkrateup

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

N Integer upsampling ratio

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

2-1256

zpkrateup

Frequencies must be normalized to be between -1 and 1, with 1
corresponding to half the sample rate.

See Also zpkrateup, allpassrateup, iirrateup

2-1257

zpkshift

Purpose Zero-pole-gain real shift frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the real lowpass prototype by applying a second-order
real shift frequency mapping.

It also returns the numerator, AllpassNum, and the denominator of the
allpass mapping filter, AllpassDen. The prototype lowpass filter is
given with zeros, Z, poles, P, and gain factor, K.

This transformation places one selected feature of an original filter,
located at frequency Wo, at the required target frequency location, Wt.
This transformation implements the "DC Mobility," which means that
the Nyquist feature stays at Nyquist, but the DC feature moves to a
location dependent on the selection of Wo and Wt.

Relative positions of other features of an original filter do not change in
the target filter. This means that it is possible to select two features of
an original filter, F1 and F2, with F1 preceding F2. Feature F1 will still
precede F2 after the transformation. However, the distance between F1
and F2 will not be the same before and after the transformation.

Choice of the feature subject to the real shift transformation is not
restricted to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the
deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of
filters; e.g., notch filters or resonators can change their position in a
simple way without the need to design them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);

2-1258

zpkshift

p = roots(a);
k = b(1);
[z2,p2,k2] = zpkshift(z, p, k, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

It is clear from the following figure that the shift process has taken the
response value at 0.5 in the prototype and replicated it in the target
at 0.25, as specified.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

2-1259

zpkshift

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

Wo Frequency value to be transformed from the prototype
filter

Wt Desired frequency location in the transformed target
filter

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassNum Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1
corresponding to half the sample rate.

See Also zpkftransf, allpassshift, iirshift

2-1260

zpkshiftc

Purpose Zero-pole-gain complex shift frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt)
[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,0.5)
[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,-0.5)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt)
returns zeros, Z2, poles, P2, and gain factor, K2, of the target filter
transformed from the real lowpass prototype by applying a first-order
complex frequency shift transformation. This transformation rotates all
the features of an original filter by the same amount specified by the
location of the selected feature of the prototype filter, originally at Wo,
placed at Wt in the target filter.

It also returns the numerator, AllpassNum, and the denominator,
AllpassDen, of the allpass mapping filter. The prototype lowpass filter
is given with zeros, Z, poles, P, and the gain factor, K.

[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,0.5)
performs the Hilbert transformation, i.e. a 90 degree counterclockwise
rotation of an original filter in the frequency domain.

[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,-0.5)
performs the inverse Hilbert transformation, i.e. a 90 degree clockwise
rotation of an original filter in the frequency domain.

Examples Design a prototype real IIR halfband filter using a standard elliptic
approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

Example 1

Rotation by -0.25:

[z2,p2,k2] = zpkshiftc(z, p, k, 0.5, 0.25);

2-1261

zpkshiftc

fvtool(b, a, k2*poly(z2), poly(p2));

Example 2

Hilbert transform:

[z2,p2,k2] = zpkshiftc(z, p, k, 0, 0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

Example 3

Inverse Hilbert transform:

[z2,p2,k2] = zpkshiftc(z, p, k, 0, -0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

Result of Example 1

After performing the rotation, the resulting filter shows the features
desired.

2-1262

zpkshiftc

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Filter
Target Filter After Rotation by −0.25

Result of Example 2

Similar to the first example, performing the Hilbert transformation
generates the desired target filter, shown here.

2-1263

zpkshiftc

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Filter
Target Filter After HIlbert Transformation

2-1264

zpkshiftc

Result of Example 3

Finally, using the inverse Hilbert transformation creates yet a third
filter, as the figure shows.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Filter
Filter Resulting From Inverse Hilbert Transformation

Arguments Variable Description

Z Zeros of the prototype lowpass filter

P Poles of the prototype lowpass filter

K Gain factor of the prototype lowpass filter

Wo Frequency value to be transformed from the
prototype filter

2-1265

zpkshiftc

Variable Description

Wt Desired frequency location in the transformed
target filter

Z2 Zeros of the target filter

P2 Poles of the target filter

K2 Gain factor of the target filter

AllpassDen Numerator of the mapping filter

AllpassDen Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1
corresponding to half the sample rate.

See Also zpkftransf, allpassshiftc, iirshiftc

References Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal
Processing, Prentice-Hall International Inc., 1989.

Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert
transformers, and half-band low-pass filters,” IEEE Transactions on
Education, vol. 32, pp. 314-318, August 1989.

2-1266

zplane

Purpose Zero-pole plot for filter

Syntax zplane(Hq)
zplane(Hq,'plotoption')
zplane(Hq,'plotoption','plotoption2')
[zq,pq,kq] = zplane(Hq)
[zq,pq,kq,zr,pr,kr] = zplane(Hq)

Description This function displays the poles and zeros of quantized filters, as well as
the poles and zeros of the associated unquantized reference filter.

zplane(Hq) plots the zeros and poles of a quantized filter Hq in the
current figure window. The poles and zeros of the quantized and
unquantized filters are plotted by default. The symbol o represents a
zero of the unquantized reference filter, and the symbol x represents a
pole of that filter. The symbols and + are used to plot the zeros and
poles of the quantized filter Hq. The plot includes the unit circle for
reference.

zplane(Hq,'plotoption') plots the poles and zeros associated with
the quantized filter Hq according to one specified plot option. The string
’plotoption’ can be either of the following reference filter display
options:

• on to display the poles and zeros of both the quantized filter and the
associated reference filter (default)

• off to display the poles and zeros of only the quantized filter

zplane(Hq,'plotoption','plotoption2') plots the poles and zeros
associated with the quantized filter Hq according to two specified plot
options. The string ’plotoption’ can be selected from the reference filter
display options listed in the previous syntax. The string ’plotoption2’
can be selected from the section-by-section plotting style options
described in the following list:

• individual to display the poles and zeros of each section of the filter
in a separate figure window

2-1267

zplane

• overlay to display the poles and zeros of all sections of the filter on
the same plot

• tile to display the poles and zeros of each section of the filter in a
separate plot in the same figure window

[zq,pq,kq] = zplane(Hq) returns the vectors of zeros zq, poles pq,
and gains kq. If Hq has n sections, zq, pq, and kq are returned as 1-by-n
cell arrays. If there are no zeros (or no poles), zq (or pq) is set to the
empty matrix [].

[zq,pq,kq,zr,pr,kr] = zplane(Hq) returns the vectors of zeros
zr, poles pr, and gains kr of the reference filter associated with the
quantized filter Hq, and returns the vectors of zeros zq, poles pq, and
gains kq for the quantized filter Hq.

Examples Create a quantized filter Hq from a fourth-order digital filter with
cutoff frequency of 0.6. Scale the transfer function parameters to avoid
overflows due to coefficient quantization. Plot the quantized and
unquantized poles and zeros associated with this quantized filter.

[b,a] = ellip(4,.5,20,.6);
Hq = dfilt.df2(b/2 a/2);
Hq.arithmetic = 'fixed';
zplane(Hq);

2-1268

zplane

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real part

Im
ag

in
ar

y
pa

rt

Quantized zeros
Quantized poles
Reference zeros
Reference poles

See Also freqz, impz

2-1269

zplane

2-1270

Index

IndexA
adaptfilt

about 2-2
copying 2-9

addstages method 2-266

B
block method 2-266

C
cascade method 2-266
coefficients method 2-266
convert method 2-266

D
dfilt 2-6

cascade 2-285
df1 2-295
df1sos 2-305
df1t 2-318
df1tsos 2-331
df2 2-347
df2sos 2-357
df2t 2-370
df2tsos 2-381
direct-form antisymmetric FIR 2-394
direct-form FIR transposed 2-414
direct-form II transposed (df2t) 2-370
direct-form IIR 2-404
direct-form symmetric FIR 2-424
lattice allpass 2-435
lattice autoregressive 2-445
lattice moving-average maximum 2-466
lattice moving-average minimum 2-475
parallel 2-486
scalar 2-487

See also Signal Processing Toolbox
documentation

dfilt function 2-260
convert structures 2-273
copying 2-273
methods 2-265
structures 2-260

dfilt.cascade 2-285
dfilt.df1 2-295
dfilt.df1sos 2-305
dfilt.df1t 2-318
dfilt.df1tsos 2-331
dfilt.df2 2-347
dfilt.df2sos 2-357
dfilt.df2t 2-370
dfilt.df2tsos 2-381
dfilt.dffir 2-404
dfilt.dffirt 2-414
dfilt.dfsymfir 2-424
dfilt.latticeallpass 2-435
dfilt.latticear 2-445
dfilt.latticemamax 2-466
dfilt.latticemamin 2-475
dfilt.parallel 2-486
dfilt.scalar 2-487

F
farrow filter 2-518
fcfwrite method 2-267
fdesign

reference 2-539
fftcoeffs method 2-267
filter

initial conditions 2-9
states 2-9

filter design
multirate 1-9

filter method 2-267
filters

Index-1

Index

impulse response 2-947
initial conditions using dfilt 2-273
objects 2-260
states 2-273

firtype method 2-267
frequency response 2-851
freqz 2-851
freqz method 2-267

G
grpdelay method 2-267

I
impz method 2-267
impzlength method 2-267
info method

dfilt function 2-267
initial conditions 2-9

using dfilt states 2-273
isallpass method 2-268
iscascade method 2-268
isfir method 2-268
islinphase method 2-268
ismaxphase method 2-268
isminphase method 2-268
isparallel method 2-268
isreal method 2-268
isscalar method 2-268
issos method 2-268
isstable method 2-268

M
mfilt object 2-993
mfilt objects 1-9
multirate filter functions 1-9
multirate object 2-993

See also mfilt

N
nsections method 2-269
nstages method 2-269
nstate method 2-269

O
object

adaptfilt 2-2
changing properties 2-9 2-273
filter 2-260
mfilt 2-993
viewing parameters 2-8
viewing properties 2-272

order method 2-269

P
parallel method 2-269
phasez method 2-269
plots

zero-pole, command for 2-1267
pole-zero plots 2-1267
polyphase filters 1-9

See also multirate filter functions

Q
quantized filters

filtering data 2-675 2-677
frequency response 2-851
zero-pole plots 2-1267

R
realizemdl method 2-270
removestage method 2-271

S
setstage method 2-271

Index-2

Index

sos method 2-271
ss method 2-271
stepz method 2-272

T
tf method 2-272

Z
zero-pole plots 2-1267
zerophase method 2-272
zpk method 2-272
zplane 2-1267

plotting options 2-1267
zplane method 2-272

Index-3

	toc
	Functions — By Category
	Adaptive Filter Constructors
	Least Mean Squares (LMS) Based FIR Adaptive Filters
	Recursive Least Squares (RLS) Based FIR Adaptive Filters
	Affine Projection (AP) FIR Adaptive Filters
	FIR Adaptive Filters in the Frequency Domain (FD)
	Lattice Based (L) FIR Adaptive Filters

	Discrete-Time Filter Constructors
	Filter Specification Objects (fdesign) — Response Types
	Filter Specification Objects (fdesign) — Design Methods
	Multirate Filter Constructors
	GUI-Based Filter Design Methods
	Filter Analysis Methods
	Fixed-Point Filter Construction and Properties
	Quantized Filter Analysis Functions
	SOS Conversion Functions
	Filter Design Functions
	Filter Conversion Functions

	Functions — Alphabetical List
	Index

